
Virtual Memory

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems
Uppsala University

Spring 2007

Demand Paging Page Replacement Frame Allocation Thrashing

Background

Paging & Segmentation

Keep many processes in memory simultaneously
to allow multiprogramming

Virtual Memory

Not the whole process in main memory

Demand Paging Page Replacement Frame Allocation Thrashing

Background

Requirement: Executed instruction must be in MEM

A solution: Place the whole logical address space in MEM
(Help: dynamic loading)

Problem: limits programs to size of physical MEM

But programs not entirely needed.
(Ex: error routines, array allocated too large)

Even if entirely needed, maybe not at the same time...

Demand Paging Page Replacement Frame Allocation Thrashing

So....

Allow programs to be partially in memory

Demand Paging Page Replacement Frame Allocation Thrashing

Advantages

1 Prg can be bigger than phys MEM.
Prg are written for large virtual mem space

2 Each prg takes less phys MEM
⇒ more prg in MEM
⇒ more competition for CPU scheduling
⇒ increase CPU utilization and throughput.
(But no increase in response time or turnaround time)

3 less IO needed to swap in or out
(⇒ faster for each user prg)

Benefits both USER and SYSTEM.

Demand Paging Page Replacement Frame Allocation Thrashing

Outline

Common solution: Demand Paging

If we don’t have all the pages at once:

How to allocate pages?

Whom to replace, in case MEM is “full”

Any problems?

Demand Paging Page Replacement Frame Allocation Thrashing

Demand Paging

Main method: Lazy swapping

Bring the pages in, only when needed.

Begin with the page containing the start PC

Page already in memory? Use it

Page referenced but not in memory? Bring it into memory

etc...

Demand Paging Page Replacement Frame Allocation Thrashing

Implementation

Idea

Use the valid/invalid bit to distinguish
between pages in MEM and pages on disk.

Valid: both

Legal

In memory

Invalid: either

Not Legal (not in the logical address

space of that process)

Valid but currently not in memory

Demand Paging Page Replacement Frame Allocation Thrashing

Page-Fault

Access to invalid pages causes a page-fault trap

check if the page exists (else give addressing error)

find a free frame for the page:
if none, page out some other page
⇒ page replacement

read the page from disk (move to device queue)

when page read, update page table

when process scheduled, restart the instruction

Demand Paging Page Replacement Frame Allocation Thrashing

Page-Fault

Demand Paging Page Replacement Frame Allocation Thrashing

Performance

Restart the instruction... Problem?

Example (C = A + B)

1 Fetch and decode the instruction (ADD)
2 Fetch A (load mem location in register)

3 Fetch B
4 Add A and B (ADD R1, R2, R3)

5 Store the sum in C

Fetch instruction, decode it, fetch operand A,...oops...page-fault...fetch instruction, decode it, fetch operand A, fetch

operand B,...oops...page-fault...fetch instruction, decode it, fetch operand A, fetch operand B, add A and B, store

result in C,...oops...page-fault...fetch instruction, decode it...

Demand Paging Page Replacement Frame Allocation Thrashing

Effective access time

Slow? Fast?

Effective access time

= p ∗ page-fault-time + (1 − p) ∗ mem-access-time

Example

200ns to access memory. 8ms to service a page-fault.

effective access time = p ∗ (8ms)(1 − p) ∗ (200ns)

= p ∗ 8′000′000 + (1 − p) ∗ 200

= 7′999′800 ∗ p + 200

Max 10% overhead? 220 > 200 + 7′999′800 ∗ p ⇒ p < 2.5 ∗ 10−6

Demand Paging Page Replacement Frame Allocation Thrashing

Effective access time

Effective access time

= p ∗ page-fault-time + (1 − p) ∗ mem-access-time

Minimize p.
Minimize page-fault-time ?
Swap space faster than file space (Bigger blocks, no file lookups, no indirect allocation)

copy whole program file to swap space at start

bring from file space, but update back pages in swap space

Demand Paging Page Replacement Frame Allocation Thrashing

2 major problems to issue

Page replacement (Who’s the victim?)

Frame allocation (How many frames per process?)

Demand Paging Page Replacement Frame Allocation Thrashing

Page Replacement

At a page-fault, if no
frame is free:

1 Find a victim
2 Save the victim to

swap space (*)
3 Read the new page

to the freed frame
4 Restart instruction

(*) Can skip using a modify bit

(or dirty bit) (in page table)

Demand Paging Page Replacement Frame Allocation Thrashing

Page Replacement Algorithms - Evaluation

Goal

Keep the page-fault rate low

Evaluation with reference strings
For a given page size, just consider the frame numbers.

Example

0100,0423,0101,0612,0102,0103,0104,0101,0611,0102,0103,
0104,0101,0610,0102,0103,0104,0101,0609,0102,0105

at 100 bytes per page, reduces to
1,4,1,6,1,6,1,6,1,6,1

Demand Paging Page Replacement Frame Allocation Thrashing

No surprise

Keyword: LOCALITY

Demand Paging Page Replacement Frame Allocation Thrashing

Page Replacement Algorithms

FIFO replacement

Optimal algorithm (OPT or MIN)

LRU: Least-Recently Used

LRU approximations

reference string
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

Demand Paging Page Replacement Frame Allocation Thrashing

FIFO Page Replacement

Demand Paging Page Replacement Frame Allocation Thrashing

Belady’s anomaly

1,2,3,4,1,2,5,1,2,3,4,5

Demand Paging Page Replacement Frame Allocation Thrashing

Optimal Page Replacement Algorithm

Lowest page-fault rate

No Belady’s anomaly

But difficult to implement
(because need for future knowledge of reference string. Cf STF)

Comparison: New algo not optimal but good enough:
within 12.3% at worst and 4.7% on average

Demand Paging Page Replacement Frame Allocation Thrashing

LRU: Least Recently Used

Demand Paging Page Replacement Frame Allocation Thrashing

LRU: Least Recently Used - How?

Keep track of when frames are used: hardware support

Clock/Counter: each frame’s clock field is updated when the page
is referenced. The clock gets incremented at each memory reference.
Problems:

clock overflow
search page table for least recently used
write to page table on each reference ...

Stack: when a frame is referenced, put it on the top of the stack.
Replace the frame at the bottom of the stack (use double-linked list).

No searching for victim, but update of links necessary.

Every memory references....⇒ Done in TLB

Demand Paging Page Replacement Frame Allocation Thrashing

LRU: Least Recently Used - Approximation

Reference bit(s)

Second-Chance algorithm

Reference counting

Demand Paging Page Replacement Frame Allocation Thrashing

LRU-Approximation: Reference bit(s)

One single bit:
1 set the reference bit when page is referenced
2 clear the bits periodically
3 select the first non-marked (not used frequently) as victim.

More reference bits
1 shift right all bits periodically
2 set the most significant when referenced (approximates a clock)

3 select the lowest value as victim.

Demand Paging Page Replacement Frame Allocation Thrashing

Second-Chance Algorithm (FIFO + One reference bit)

Demand Paging Page Replacement Frame Allocation Thrashing

Reference counting

Keep track of the number of references (not when the reference was made)

Least Frequently Used (LFU)
An active page is referenced often: High count.

Most Frequently Used (MFU)
The smallest counter has just arrived and will be
referenced again soon.

Neither is a good approximation of OPT,
and both are expensive.

Demand Paging Page Replacement Frame Allocation Thrashing

Decreasing Page-Fault handling time

Goal

Low page-fault rate

Keep a pool of free frames, page in to one while paging out
the victim: wait for the I/O "in parallel".

Keep track of which pages are in the free frames, and if
one needs to be paged in, no I/O needed.

If paging disk is idle, write out dirty frames in background
(and mark them "clean"), so it’s already done when
needed.

Demand Paging Page Replacement Frame Allocation Thrashing

How many frames?

How to divide frames between processes? How many per
processes? Equal? Not equal?

Max? ⇒ total number of available frames
Min? ⇒ seek performance ⇒ Low page-fault rate

Restart the instruction after page-fault

Minimum number of frames

Need enough frames to hold the different pages that an
instruction can reference, including indirect addressing, etc...

⇒ Depends on the computer architecture

Demand Paging Page Replacement Frame Allocation Thrashing

Principles

Equal share: #frames
#processes

but different processes have different needs (not equal sizes)

Proportional: use relative size: si
P

si
∗ #frames

but consider process priorities too!

Demand Paging Page Replacement Frame Allocation Thrashing

Allocation - How to choose?

From whom to choose?

Global replacement: replace any page
(including those allocated to other processes)

Local replacement: only replace pages of the process itself

Global replacement: page-fault behavior of one process

affects all the others (by "stealing" frames from others)

is affected by other processes too (symmetrically)

Local replacement: more “fair”, but may lead to lower frame
utilization (⇒ lower CPU utilization)

Demand Paging Page Replacement Frame Allocation Thrashing

Thrashing

More time is spent paging (=handling page faults)
than executing programs

Demand Paging Page Replacement Frame Allocation Thrashing

Thrashing - Brighter sky

Local replacement helps by not spreading thrashing from one
process to the others

but

the thrashing process increases the load on the paging disk
⇒ longer access times for other processes.

Preventing thrashing

Must provide a process with as many frames as it “needs”

Demand Paging Page Replacement Frame Allocation Thrashing

Demand Paging Page Replacement Frame Allocation Thrashing

Working-set model

Demand Paging Page Replacement Frame Allocation Thrashing

Page-fault frequency

