Scheduling Algorithms

Frédéric Haziza <daz@t . uu. se>

Department of Computer Systems
Uppsala University

Spring 2008



e Recall

e Basics

@ Concepts
@ Criteria

e Algorithms

e Multi-Processor Scheduling

@ OSKomp'08 | Scheduling Algorithms



Storage Managemb

the class: Networking, GUI, Device Drivers

@ OSKomp'08 | Scheduling Algorithms



Recall

Hardware

@ OSKomp'08 | Scheduling Algorithms



Recall
[ le]

Recall...States & Transitions

terminated

admitted interrupt exit

running

scheduler dispatch

I/O or event completion /O or event wait

E Interrupts
m Traps (software errors, illegal instructions)
m System calls

@ OSKomp'08 | Scheduling Algorithms



Recall
oe

What happens at a transition?

process Fy operating system process P,

interrupt or system call

executing Jl
T | save state into PCB, |

idle

.
.

| reload state from PCB:[

ridle interrupt or system call executing

| save state into PCB, [

-
idle

|reload state from PCB,,[

executing E\—‘

@ OSKomp'08 | Scheduling Algorithms




Recall
e0

Process Control Block & Queues

\ PCB |
Job Queue
process state _ -
process ID (number) Linked list of PCBs

PC .
Registers m (main) job queue
memory information m ready queue
open files m device queues

other resources

B Long-term/Job scheduler
(loads from disk)

B Short-term/CPU scheduler
(dispatches from ready queue)

@ OSKomp'08 | Scheduling Algorithms



thread —» §

‘ code H data || filas ‘ code H data H files ‘
| stack ‘registers ‘ ‘registers ‘ ‘registars ‘
‘ stack H stack H stack ‘

-

— thread

single-threaded process

multithreaded process

OSKomp'08 | Scheduling Algorithms



Recall
[ ]

On Operating Systems which support threads,
it is kernel-level threads — not processes —
that are being scheduled.

However, process sheduling = thread scheduling.

@ OSKomp'08 | Scheduling Algorithms



Basics
[ ]

CPU and 10 Bursts

load, store,
add, store,
read from file

frequency
o © o
& & ©
——

| Waitforlo | o

store,increment, 20 \

branch, write to file o 0 ms'iedmnmﬁ‘i—,emm = m
| Waitforio | -

load, store, CPU Burst cycles

read from file Intervals with no 1/0 usage

\ Wait for 10 \
: Waiting time
Sum of time waiting in ready queue

|

OSKomp'08 | Scheduling Algorithms



Basics
0

When should we schedule a process?

m From running state to waiting state

m From running state to ready state
m From waiting state to ready state
m Terminates

preemptive

non-preemptive
or cooperative

@ OSKomp'08 | Scheduling Algorithms



Basics
oce

How do we select the next process?

m CPU utilization
CPU as busy as possible

m Throughput

Number of process that are completed per time unit
m Turnaround time

Time between submisson and completion
m Waiting time

Scheduling affects only waiting time

m Response time
Time between submisson and first response

@ OSKomp'08 | Scheduling Algorithms



Algorithms
[ eJelele]

First Come, First Served (FCFS)

m Non-preemptive
m Treats ready queue as FIFO.
m Simple, but typically long/varying waiting time.

@ OSKomp'08 | Scheduling Algorithms



Algorithms
(o] lelele]

First Come, First Served (FCFS)

Process | Bursttime | Arrival
P1 24 0
P, 3 0
P3 3 0
Gantt chart: Order P4, P5, P3
| Py | P>, | Pz |
0 24 27 30

Average waiting time: (0+24+27)/3 =17

OSKomp'08 | Scheduling Algorithms



Algorithms
[e]e] Tele]

First Come, First Served (FCFS)

Process | Bursttime | Arrival
P1 24 0
P, 3 0
P3 3 0
Gantt chart: Order P,, P3, P
| P> | Ps | P4 |
0 3 6 30

Average waiting time: (0+3+6)/3 =3

@ OSKomp'08 | Scheduling Algorithms



Algorithms
[e]e]e] o]

Convoy effect

Consider :
m P;: CPU-bound
m P, P3, P4: 1/0O-bound

OSKomp'08 | Scheduling Algorithms



Algorithms
[eele]e] ]

Convoy effect

m P,, P53 and P4 could quickly finish their 10 request = ready
gueue, waiting for CPU.

Note: 10 devices are idle then.

then P; finishes its CPU burst and move to an IO device.
P,, P3, P4, which have short CPU bursts, finish quickly =
back to 10 queue.

Note: CPU is idle then.

P, moves then back to ready queue is gets allocated CPU
time.

Again P,, P3, P4 wait behind P, when they request CPU
time.

One cause: FCFS is non-preemptive
P; keeps the CPU as long as it needs

@ OSKomp'08 | Scheduling Algorithms



Algorithms
00000

Shortest Job First (SJF)

m Give CPU to the process with the shortest next burst
m If equal, use FCFS
m Better name: shortest next cpu burst first

Know the length of the next CPU burst of each process in
Ready Queue

OSKomp'08 | Scheduling Algorithms



Algorithms
(o] Jelele]

Short Job First (SJF)

Process | Bursttime | Arrival
P, 6 0
P, 8 0
P53 7 0
P4 3 0
Gantt chart: Order P4, P, P3, P4
| Ps | Py | P3 | P> |
0 3 9 16 24

A\

Average waiting time: (0+3+16+9)/4 =7
With FCFS: (0+6+(6+8)+(6+8+7))/4 = 10.25

OSKomp'08 | Scheduling Algorithms



Algorithms
00e00

SJF — Characteristics

Optimal wrt. waiting time!

Problem: how to know the next burst?
m User specifies (e.g. for batch system)

m Guess/predict based on earlier bursts,
using exponential average:
Tht1 = ot + (1 — a)m
tn: most recent information
Tn: past history

Can be preemptive or not

OSKomp'08 | Scheduling Algorithms



Algorithms
000e0

SJF with Preemption

Shortest Remaining Time First

When a process arrives to RQ, sort it in and select the SJF
including the running process, possibly interrupting it

(Remember: SJF schedules a new process only when the running is finished)

@ OSKomp'08 | Scheduling Algorithms



Algorithms
0000e

SJF with Preemption

Process | Bursttime | Arrival
P, 8 0
P, 4 1
P53 9 2
P4 5 3
Gantt chart
| Pt | P | Py | Py | P3 |
0 1 5 10 17 26

Average waiting time: ((10-1)+(1-1)+(17-2)+(5-3))/4 = 6.5
With SJF: (0+4+(4+5)+(4+5+8))/4 = 7.75

@ OSKomp'08 | Scheduling Algorithms



Algorithms
@00

Priority Scheduling Algorithms

m Priority associated with each process
m CPU allocated to the process with highest priority
m If equal, use FCFS

Note: SJF is a priority scheduling algorithm with
1

p= (predicted) next CPU burst

@ OSKomp'08 | Scheduling Algorithms



Algorithms
(o] le}

Priority Scheduling Algorithms

Process | Bursttime | Arrival | Priority
P1 10 0 3
Py 1 0 1
P3 2 0 4
Py 1 0 5
Ps 5 0 2

Average waiting time: (0+1+6+16+18)/5 = 8.2

OSKomp'08 | Scheduling Algorithms



Algorithms
[ofe] ]

Priority Criteria

m Internal Priority

time limits, mem requirements, number of open files,
ratio Average 10 burst
Average CPU burst

m External Priority
Critera outside the OS. Choice related to computer usage.

m Can be preemptive or not

m Problem: Starvation (or Indefinite Blocking)
m Solution: Aging

@ OSKomp'08 | Scheduling Algorithms



Algorithms

Round-Robin (RR)

m FCFS with Preemption
m Time quantum (or time slice)
m Ready Queue treated as circular queue

OSKomp'08 | Scheduling Algorithms



Round-Robin (RR)

Quantumqgq =4

Algorithms

Process | Bursttime | Arrival
P 24 0
P, 3 0
P3 3 0

Average waiting time: (0+4+7+(10-4))/3 = 5.66
With FCFS: (0+24+27)/3 = 17

@ OSKomp'08 | Scheduling Algorithms




Algorithms

RR — Characteristics

m Turnaround time typically larger than SRTF but better
response time

m Performance depends on quantum q
e Small g: Overhead due to context switches (& scheduling)

g should be large wrt context-switching time

e Large q: Behaves like FCFS

rule of thumb: 80% of bursts should be shorter than q (also improves turnaround time)

OSKomp'08 | Scheduling Algorithms



Algorithms

Quantum vs Context switches

Context Switches

Quantum
process time = 10 /
12 0
0 10
6 1
0 6 10
1 9

OSKomp'08 | Scheduling Algorithms



Algorithms

Multilevel Queue Scheduling

Observation

Different algorithms suit different types of processes

(e.g. interactive vs batch/background processes)

and systems are often not only running interactive or "batch"
processes.

Multilevel queues

We split the Ready Queue in several queues,
each with its own scheduling algorithm

| \

interactive processes: RR
background processes: FCFS/SRTF

OSKomp'08 | Scheduling Algorithms



Algorithms

(o] lele]e}

Multilevel Queue — Scheduling among Queues

One more dimension
We need scheduling between the Ready Queues

Example (Common implementation)
Fixed-priority preemption (with priority to interactive processes)

@ OSKomp'08 | Scheduling Algorithms



Algorithms
00e00

Multilevel Queue — More complex example

nighest priorty
SySipFiectesss
where each queue has absolute priority over
interactive processes
lower-priority queues.
ir editing pr

No process in low-priority queues can run if

batch processes

high-priority queues are not empty

student processes

[111]
LI

|lowest priority

So, if a lower-priority queue is only used when all higher-priority RQs are
empty & higher-priority processes preempt lower-priority ones,
we risk starvation.

Possible solution: give time-slices to each Ready Queue

(basically RR between the queues, with different quanta for each queue)

= Each queue gets a certain guaranteed slice of the CPU time.

@ OSKomp'08 | Scheduling Algorithms



Algorithms

[e]ele] o}

Multi-Level Feedback Queue Scheduling (MLFQ)

With MLQ, each process is permanently assigned to one queue
(based on type, priority etc).

allow processes to move between queues

Idea: Separate processes according to their CPU bursts.

m Let processes with long CPU bursts move down in the
gueue levels

m Leave I/O bound and interactive processes in high-priority
queues

m Combine with aging principle to prevent starvation

@ OSKomp'08 | Scheduling Algorithms



Algorithms

MLFQ — Example

s 3

Round-Robin with quantum 8 7_
Round-Robin with quantum 16 T

Q; has priority over, and preempts, Q. 1.

New processes are added to Q;.

If a process in Q, or Q, does not finish within its quantum, it is
moved down to the next queue.

Thus:

m short bursts (I/O bound and interactive proc) are served quickly;

m slightly longer are also served quickly but with less priority;

m long (CPU bound processes) are served when there is CPU to be
spared.

OSKomp'08 | Scheduling Algorithms



Multi-Processor Scheduling
[ ]

Symmetry / Asymmetry

Asymmetric MPs scheduling

One Master Server does all scheduling.
Others execute only user code

Symmetric MPs (SMP) scheduling

Each processor does scheduling.
(whether CPUs have a common or private Ready Queues)

@ OSKomp'08 | Scheduling Algorithms



Multi-Processor Scheduling
o

Processor Affinity

Try to keep a process on the same processor as last time,
because of Geographical Locality

(Moving the process to another CPU causes cache misses)

m Soft affinity

The process may move to another processor

m Hard affinity

The process must stay on the same processor

OSKomp'08 | Scheduling Algorithms



Multi-Processor Scheduling
[ ]

Load Balancing

Keep the workload evenly distributed over the processors

m push migration
periodically check the load, and "push” processes to less
loaded queues.

m pull migration
idle processors "pull" processes from busy processors

Note: Load balancing goes against processor affinity.

@ OSKomp'08 | Scheduling Algorithms



Multi-Processor Scheduling
L ]

Hyperthreaded CPUs

CPUs with multiple "cores"

Sharing cache and bus influences affinity concept and thus
scheduling.

The OS can view each core as a CPU, but can make additional
benefits with threads

OSKomp'08 | Scheduling Algorithms



	Recall
	
	
	

	Basics
	Concepts
	Criteria

	Algorithms
	
	
	
	
	

	Multi-Processor Scheduling
	
	
	
	


