
Scheduling Algorithms

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Spring 2008

Recall Basics Algorithms Multi-Processor Scheduling

Outline

1 Recall

2 Basics
Concepts
Criteria

3 Algorithms

4 Multi-Processor Scheduling

2 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Recall

Process Management

Memory Management

Storage Management

Protection and Security
Not in

the class: Networking, GUI, Device Drivers

3 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Hardware

CPU MEM Disk

4 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Recall...States & Transitions

Interrupts

Traps (software errors, illegal instructions)

System calls

5 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

What happens at a transition?

6 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Process Control Block & Queues

PCB
process state

process ID (number)
PC

Registers
memory information

open files
...

other resources

Job Queue
Linked list of PCBs

(main) job queue

ready queue

device queues

Schedulers
Long-term/Job scheduler

(loads from disk)

Short-term/CPU scheduler

(dispatches from ready queue)

7 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Threads

8 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Note that...
On Operating Systems which support threads,
it is kernel-level threads – not processes –
that are being scheduled.

However, process sheduling ≈ thread scheduling.

9 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

CPU and IO Bursts

...
load, store,
add, store,
read from file

Wait for IO
store,increment,
branch, write to file

Wait for IO
load, store,
read from file

Wait for IO
...

CPU Burst cycles
Intervals with no I/O usage

Waiting time
Sum of time waiting in ready queue

10 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

When should we schedule a process?

From running state to waiting state

From running state to ready state

From waiting state to ready state

Terminates

Scheme
non-preemptive
or cooperative

Scheme
preemptive

11 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

How do we select the next process?

CPU utilization
CPU as busy as possible

Throughput
Number of process that are completed per time unit

Turnaround time
Time between submisson and completion

Waiting time
Scheduling affects only waiting time

Response time
Time between submisson and first response

12 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

First Come, First Served (FCFS)

Non-preemptive

Treats ready queue as FIFO.

Simple, but typically long/varying waiting time.

13 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

First Come, First Served (FCFS)

Example

Process Burst time Arrival
P1 24 0
P2 3 0
P3 3 0

Gantt chart: Order P1, P2, P3

| P1 | P2 | P3 |
0 24 27 30

Average waiting time: (0+24+27)/3 = 17

14 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

First Come, First Served (FCFS)

Example

Process Burst time Arrival
P1 24 0
P2 3 0
P3 3 0

Gantt chart: Order P2, P3, P1

| P2 | P3 | P1 |
0 3 6 30

Average waiting time: (0+3+6)/3 = 3

15 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Convoy effect

Consider :

P1: CPU-bound

P2, P3, P4: I/O-bound

16 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Convoy effect

P2, P3 and P4 could quickly finish their IO request ⇒ ready
queue, waiting for CPU.

Note: IO devices are idle then.

then P1 finishes its CPU burst and move to an IO device.

P2, P3, P4, which have short CPU bursts, finish quickly ⇒

back to IO queue.

Note: CPU is idle then.

P1 moves then back to ready queue is gets allocated CPU
time.

Again P2, P3, P4 wait behind P1 when they request CPU
time.

One cause: FCFS is non-preemptive
P1 keeps the CPU as long as it needs

17 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Shortest Job First (SJF)

Give CPU to the process with the shortest next burst

If equal, use FCFS

Better name: shortest next cpu burst first

Assumption
Know the length of the next CPU burst of each process in
Ready Queue

18 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Short Job First (SJF)

Example

Process Burst time Arrival
P1 6 0
P2 8 0
P3 7 0
P4 3 0

Gantt chart: Order P1, P2, P3, P4

| P4 | P1 | P3 | P2 |
0 3 9 16 24

Average waiting time: (0+3+16+9)/4 = 7
With FCFS: (0+6+(6+8)+(6+8+7))/4 = 10.25

19 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

SJF – Characteristics

Optimal wrt. waiting time!

Problem: how to know the next burst?

User specifies (e.g. for batch system)

Guess/predict based on earlier bursts,
using exponential average:
τn+1 = αtn + (1 − α)τn

tn: most recent information
τn: past history

Can be preemptive or not

20 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

SJF with Preemption

Shortest Remaining Time First
When a process arrives to RQ, sort it in and select the SJF
including the running process, possibly interrupting it
(Remember: SJF schedules a new process only when the running is finished)

21 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

SJF with Preemption

Example

Process Burst time Arrival
P1 8 0
P2 4 1
P3 9 2
P4 5 3

Gantt chart

| P1 | P2 | P4 | P1 | P3 |
0 1 5 10 17 26

Average waiting time: ((10-1)+(1-1)+(17-2)+(5-3))/4 = 6.5
With SJF: (0+4+(4+5)+(4+5+8))/4 = 7.75

22 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Priority Scheduling Algorithms

Priority associated with each process

CPU allocated to the process with highest priority

If equal, use FCFS

Note: SJF is a priority scheduling algorithm with
p = 1

(predicted) next CPU burst

23 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Priority Scheduling Algorithms

Example

Process Burst time Arrival Priority
P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Gantt chart

| P2 | P5 | P1 | P3 | P4 |
0 1 6 16 18 19

Average waiting time: (0+1+6+16+18)/5 = 8.2

24 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Priority Criteria

Internal Priority
time limits, mem requirements, number of open files,
ratio Average IO burst

Average CPU burst

External Priority
Critera outside the OS. Choice related to computer usage.

Can be preemptive or not

Problem: Starvation (or Indefinite Blocking)

Solution: Aging

25 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Round-Robin (RR)

FCFS with Preemption

Time quantum (or time slice)

Ready Queue treated as circular queue

26 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Round-Robin (RR)

Example

Quantum q = 4

Process Burst time Arrival
P1 24 0
P2 3 0
P3 3 0

Gantt chart

| P1 | P2 | P3 | P1 | . . . | P1 |
0 4 7 10 14 26 30

Average waiting time: (0+4+7+(10-4))/3 = 5.66
With FCFS: (0+24+27)/3 = 17

27 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

RR – Characteristics

Turnaround time typically larger than SRTF but better
response time

Performance depends on quantum q

• Small q: Overhead due to context switches (& scheduling)
q should be large wrt context-switching time

• Large q: Behaves like FCFS
rule of thumb: 80% of bursts should be shorter than q (also improves turnaround time)

28 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Quantum vs Context switches

process time = 10

0 10

0 106

0 1 2 3 4 5 6 7 8 9 10

Context Switches

Quantum

12 0

6 1

1 9

29 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Multilevel Queue Scheduling

Observation
Different algorithms suit different types of processes
(e.g. interactive vs batch/background processes)
and systems are often not only running interactive or "batch"
processes.

Multilevel queues
We split the Ready Queue in several queues,
each with its own scheduling algorithm

Example
interactive processes: RR
background processes: FCFS/SRTF

30 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Multilevel Queue – Scheduling among Queues

One more dimension
We need scheduling between the Ready Queues

Example (Common implementation)
Fixed-priority preemption (with priority to interactive processes)

31 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Multilevel Queue – More complex example

where each queue has absolute priority over

lower-priority queues.

No process in low-priority queues can run if

high-priority queues are not empty

So, if a lower-priority queue is only used when all higher-priority RQs are
empty & higher-priority processes preempt lower-priority ones,
we risk starvation.

Possible solution: give time-slices to each Ready Queue
(basically RR between the queues, with different quanta for each queue)

⇒ Each queue gets a certain guaranteed slice of the CPU time.

32 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Multi-Level Feedback Queue Scheduling (MLFQ)

With MLQ, each process is permanently assigned to one queue
(based on type, priority etc).

MLFQ
allow processes to move between queues

Idea: Separate processes according to their CPU bursts.

Example
Let processes with long CPU bursts move down in the
queue levels

Leave I/O bound and interactive processes in high-priority
queues

Combine with aging principle to prevent starvation

33 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

MLFQ – Example

1 Round-Robin with quantum 8

2 Round-Robin with quantum 16

3 FCFS

Qi has priority over, and preempts, Qi+1.
New processes are added to Q1.
If a process in Q1 or Q2 does not finish within its quantum, it is
moved down to the next queue.
Thus:

short bursts (I/O bound and interactive proc) are served quickly;

slightly longer are also served quickly but with less priority;

long (CPU bound processes) are served when there is CPU to be
spared.

34 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Symmetry / Asymmetry

Asymmetric MPs scheduling
One Master Server does all scheduling.
Others execute only user code

Symmetric MPs (SMP) scheduling
Each processor does scheduling.
(whether CPUs have a common or private Ready Queues)

35 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Processor Affinity

Try to keep a process on the same processor as last time,
because of Geographical Locality
(Moving the process to another CPU causes cache misses)

Soft affinity
The process may move to another processor

Hard affinity
The process must stay on the same processor

36 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Load Balancing

Keep the workload evenly distributed over the processors

push migration
periodically check the load, and "push" processes to less
loaded queues.

pull migration
idle processors "pull" processes from busy processors

Note: Load balancing goes against processor affinity.

37 OSKomp’08 | Scheduling Algorithms

Recall Basics Algorithms Multi-Processor Scheduling

Hyperthreaded CPUs

CPUs with multiple "cores"

Sharing cache and bus influences affinity concept and thus
scheduling.

The OS can view each core as a CPU, but can make additional
benefits with threads

38 OSKomp’08 | Scheduling Algorithms

	Recall
	
	
	

	Basics
	Concepts
	Criteria

	Algorithms
	
	
	
	
	

	Multi-Processor Scheduling
	
	
	
	

