Syntax Analysis - Parsing

Frédéric Haziza <daz@t . uu. se>

Department of Computer Systems
Uppsala University

Spring 2008

SILBERSCHATZ
GALVIN
b GAGNE

Operating Systems

m Process Management
m Memory Management
m Storage Management

THE ESSENCE OF

COMPILERS

m Compiling process &
Lexical analysis

m Parsing

m Semantic &
Code generation

Recall — Lexical Analysis

m Transforms the stream of characters into tokens
m Uses regular expression to validate tokens
m Uses Finite Automata for transformation mechanism

m Lexical Analysers refered as lexers

analysis analysis analysis

dant code
generation

Syntax Analysis

Identify if (input) token streams satisfy the program syntax

We need:

m Expressive way to describe the syntax

m Acceptor that determine if the token streams satisfy the
syntax of the program

For Lexical analysis:
m Regular expressions, to describe tokens
m Finite Automata, as acceptors for regular expressions

Regular Expressions?

Why not using RE again but, this time, on tokens?

Reason: Not enough power to express the syntax in
programming languages

Example: Nested constructs like Blocks, Expressions,
Statements.

Solution: Use Context-Free Grammars

@ OSKomp’08 | Parsing

Context-Free Grammars

Terminal symbols: token or e
Non-terminal symbols: syntactic variables
Start Symbol S: special non-terminal

Productions of the form LHS — RHS

e LHS: a single non-terminal
e RHS: a string of terminals and non-terminals
e Specifies how non-terminals may be expanded

S—aSa
ST
T—bTh

T — ¢

@ OSKomp’08 | Parsing

Example: Balanced-parenthesis

Grammar for balanced parenthesis:
S—-{S}S
S —e¢

If a grammar accepts a string, there is a derivation of that string
using productions.

Example (String {{}})

S—{S}S—{S}e—={{S}S}te={{S}e}e—
{{ete}e

OSKomp’08 | Parsing

Short-Hand notation

mS—aSa

mS—T = mS—aSalT
mT—-bTb mT—bThbje
BT —e¢

@ OSKomp’08 | Parsing

Derivation order

2 standard orders: left-most and right-most

Left-most derivation: in the string, find the left-most
non-terminal and apply a production

E+S—1+S

Right-most derivation: in the string, find the right-most
non-terminal and apply a production

E+S—E+E+S

OSKomp'08 | Parsing

Grammar for Sum

mS—-E+S|E
m E — number | (S)

Example of accepted input:

(1+2+(3+4)+5

@ OSKomp'08 | Parsing

Expanded:
BHS—-E+S
HS - E

H E — number
BE-(S)

Derivation Example

Example (Derivation of (1 + 2 + (3 +4)) + 5)

S = B8 = (8) e = (ERS) FE =
—-(1+4S)+S—(1+E+S)+S—
—(14+2+S)+S—(14+2+E)+S—
(1+2+4+(S))+S—(1+2+(E+S))+S—
(1+42+(3+S))+S

(1424 (3+E))+S

(1+2+(3+4))+S

(1+2+(3+4))+E

(1+42+(3+4))+5

Ll bl

@ OSKomp'08 | Parsing

Parse Tree vs Abstract Syntax Tree

Concrete Syntax Tree = Parse Tree

@ OSKomp'08 | Parsing

Ambigous grammar

S —-S+S|S*S | number

Different derivation produce different parse trees
Expression: 1 +2*3

Derivation 1:
S—-S+S—-1+S—-14+S%*S—-14+2%xS —-1+2%3

Derivation 2:
S—-S%*xS —-S%«3—-S+S*x3-S+2x3—-1+2%3

OSKomp'08 | Parsing

Eliminating ambiguity

m By adding non-terminals
m By allowing recursion to the right only, or to the left only

S—-S+T|T

S —+S+S|S*S|number = T — T s number | number

@ OSKomp'08 | Parsing

Conclusion on Grammars

m Context-Free Grammar allow concise syntax specification
of programming languages

m A CFG specifies how to convert token stream to parse tree
(if non ambiguous!)

OSKomp'08 | Parsing

Parsing Top-Down

Construct a derivation of a string,
while reading in the token stream

Top-Down = Left-most

We start from the start symbol and
generate the sentence

| A\

Bottom-Up = Right-most
We start from the sentence and
reduce it to the start symbol

@ OSKomp'08 | Parsing

Top-Down Lookahead

Want to decide which production to apply based on the next
symbols
m {x"y" | m,n> 0}
S — XY
X — xX
X =X
Y —vyY
mY -y

Generate xxxyyy:
S =5 XY = xXY — xxXXY — XXXY — XXXYY — XXXyy

OSKomp'08 | Parsing

Top-Down Lookahead

At most stages of the derivation, knowledge was required of
two symbols beyond those generated so far

Seek grammars which require at most a single symbol of
lookahead at each stage of the derivation, in order to identify
the correct production to apply

Left-to-right scanning, Left-most derivation, 1 lookahead symbol

OSKomp'08 | Parsing

Bad example

Example (Bad)

mS—-E+S|E
m E — number | (S)

1) 1)+2

S—-E+S—(S)+S—

S—E—=(S)—(E)—(1) (E)+S—(1)+S— (1) +2

OSKomp'08 | Parsing

Making the grammar LL(1)

Problem: Can’t decide which S production to apply until we see
symbol after the expression

Left-factoring: Factor common S prefix and add a new
non-terminal S’ at the decision point

S—-EYS
S—-E+S ,
S'— 48
S—E ,
S'— €
E — number
E—(S) E — number
E—(S)

@ OSKomp'08 | Parsing

Predictive Parsing

For LL(1) grammar

For a given non-terminal, the lookahead symbol determines
uniquely the production to apply

Top-Down parsing = Predictive parsing

S (| (1+2+(3+4))+5
— ES’ (| (1+2+(3+4))+5
— (S)S’ 1| (1+2+(3+4))+5
— (ES")S’ 1| (1+2+(3+4))+5
— (1S)s’ + | (1+2+(3+4))+5
— (1+S)S’ 2 | (1+2+(3+4))+5
— (1+ES")S’ | 2 | (1+2+(3+4))+5
— (1+2S)S’ | + | (1+2+(3+4))+5

@ OSKomp'08 | Parsing

Using table

S (| (1+2+(3+4))+5

— ES’ (| (1+2+(3+4))+5

— (S)S’ 1| (1+2+(3+4))+5

— (ES")S’ 1| (1+2+(3+4))+5

— (1S)s’ + | (1+2+(3+4))+5

— (1+S)S’ 2 | (1+2+(3+4))+5

— (1+ES)S’ | 2 | (1+2+(3+4))+5

— (1+25)S’ | + | (1+2+(3+4))+5

| number + () 1

S — ES’ — ES/
S’ — 4SS — € —€
E | — number — (S)

@ OSKomp'08 | Parsing

Recursive-Descent Parser

number + () L
—S — ES/ — ES/
) — 4S5 — € —€
E | — number — (S)

voi d parse_S(){
swi t ch(token){
case number: parse_E();parse_S ();return;
case '(’':parse_E();parse_S ();return;
default: error();

OSKomp'08 | Parsing

Recursive-Descent Parser

number + () L
S — ES’ — ES’
—S’ — +S — € —¢€
E | — number — (S)

voi d parse_S (){
swi tch(token){
case '+ :token=input.read();parse_S();return;
case ')’ :return;
case EOF: return,
default: error();

@ OSKomp'08 | Parsing

Recursive-Descent Parser

number + () L
S — ES’ — ES/
S — +S —€ —e€
—E | — number —(S)

voi d parse_E(){
swi t ch(token) {

case number:token = input.read();return;

case ' (’':token=input.read(); parse_S();
if(token !'=")")error();

token = input.read();return

default: error();

OSKomp'08 | Parsing

Parse table

Grammar = Parse Table

For every non-terminal, every lookahead symbol can be
handled by at most one production

Grammar is LL(1) = no conflicting entries in the table

Example (Ambiguous =- Conflicts)
S —-S+S|S*S | number

number + ¥
S| - number,—S+S,—Sx%xS

@ OSKomp'08 | Parsing

Summary

LL(k) grammar
m left-to-right scanning
m left-most derivation

m can determine what production to apply from the next k
symbols

m Can automatically build predictive parsing tables

Predictive Parsers
m Can be easily built for LL(k) grammars from parsing tables
m Also called recursive-descent or top-down parsers

OSKomp'08 | Parsing

So far

m Have been using grammar for language of “sums with
parenthesis”: (1+2+(3+4))+5
m Started with simple,right-associative grammar:
e S—-E+S|E
e E — number | (S)
m Transformed it into LL(1) grammar by left-factoring:
e S—ES
e S —¢| +S
e E — number | (S)
m What if we start with left-associative grammar?
e S HE+S|E
e E — number | (S)

OSKomp'08 | Parsing

Left vs Right associative

Right-recursion: right-associative

mS—>E+S|E
m E — number

Left-recursion: left-associative
mS >E+S|E
m E — number

OSKomp'08 | Parsing

Left-recursive grammar are not LL(1)

There exists an algorithm for left-recursion elimination:
Left-recursion = Right-recursion

@ OSKomp'08 | Parsing

Creating LL(1) grammar

Start with left-recursive grammar:
e S —S+E
e S—E
Apply left-recursion elimination:
e S—ES
e S — +ES' | ¢
Start with right-associative grammar
e S—E+S
e S E
Apply left-factoring to eliminate common prefixes:
e S ES
e S"—+4S|e¢

@ OSKomp'08 | Parsing

Top-Down Parsing Summary

Language Grammar'

4

Left-recursion elimination / left-factoring I

4

LL(1) Grammar'

4

Predictive parsing table I

Y

Recursive-descent parser I

4

Parser with AST generation I

@ OSKomp'08 | Parsing

Bottom-Up Parsing

m More powerfull
m LR grammars — more expressive than LL

e construct right-most derivations
e left-recursive: virtually all programming languages
e Easier to express programming language syntax

m Shift-reduce parsers

e Parsers for LR grammars
e Automatic parser generators, like YACC

OSKomp'08 | Parsing

Parsing Top-Down

Construct a derivation of a string,
while reading in the token stream

Top-Down = Left-most

We start from the start symbol and
generate the sentence

| A\

Bottom-Up = Right-most
We start from the sentence and
reduce it to the start symbol

@ OSKomp'08 | Parsing

Backwards...

Start with tokens and mS—>S+E|E
end with the start symboIJ m E — number | (S)

(1+2+(3+4))+5—(E+2+(3+4))+5
—(S+2+(3+4))+5—(S+E+(3+4))+5
—(S+(3+4))+5—(S+(E+4))+5
—(S+(S+4))+5—-(S+(S+E))+5
—(S+(S))+5

—(S+E)+5

—(S)+5

—E+5

—S+5

—S+E

—S 1t Right-most derivation

OSKomp'08 | Parsing

Advantages

Advantages of bottom-up parsing

Can postpone the selection of productions until more of the
input is scanned

@ OSKomp'08 | Parsing

Example

{xMy" | m,n > 0}
S — XY
X — xX
X — X
Y —vyY
BEY -y

Generate xxxyyy:
S =5 XY — XyY — Xyy — XXyy — XXXYyYy — XXXYY

Recall with top-down/left-most:
S = XY = xXY — XxXXY — XXXY — XXXyY — XXXyy

OSKomp'08 | Parsing

Example

Generate xxxyyy:
S =5 XY — XyY — Xyy — XXyy — XXXYyY — XXXYyY

XXXYY — XXXYY — XXyy — Xyy — XyY — XY — S

In bottom-up parsing, right sides of productions are not
recognized until they have been completely read

= Need to store partially recognized right sides (until

replacable): a Stack

Bottom-Up information = Information like in top-down + Stack

OSKomp'08 | Parsing

Shift-Reduce Parsing

Sequence of shift and reduce

m Shift: Move lookahead token to stack

Stack | Input | Action
(1+2+(3+4))+5 | Shift 1
(1 +2+(3+4))+5

m Reduce: Replace symbol ~ from top of stack with
non-terminal symbol X, corresponding to production
X — 7Y (pop ~, push X)

Stack | Input | Action
(S+E | +(3+4))+5 | Reduce S - S+ E
(S +(3+4))+5

OSKomp'08 | Parsing

S—S+E|E E — number | (S) |
Derivation Stack Input Action
(1+2+(3+4))+5 (1+2+(3+4))+5 Shift
(1+2+(3+4))+5 — (1+2+(3+4))+5 Shift
(1+2+(3+4)+5 — (1 +2+(3+4))+5 Reduce E — number
(E+2+(3+4))+5 — (E +2+(3+4))+5 Reduce S — E
(S+2+(3+4))+5 «— (S +2+(3+4))+5 Shift
(S+2+(3+4))+5 «— (S+ 2+(3+4))+5 Shift
(S+2+(3+4))+5 «— (S+2 +(3+4))+5 Reduce E — number
(S+E+(3+4))+5 — (S+E +(3+4))+5 ReduceS — S+E
(S+(3+4))+5 (S +(3+4))+5 Shift
(S+(3+4))+5 «— (S+ (3+4))+5 Shift
(S+(3+4))+5 «— (S+(3+4))+5 Shift
(S+(3+4))+5 «— (S+(3 +4))+5 Reduce E — number

OSKomp'08 | Parsing

How do we know which action to take?
Shift or Reduce?
Which production?

Issues:
B Sometimes can reduce but shouldn’t ehitt-reduce confiicy

m Sometimes can reduce in different ways (reduce-reduce contiict)

OSKomp'08 | Parsing

Solution

We have algorithms to determine which actions to take

We can construct parsing tables (like top-down but different
shapes) and we check for conflicts.

We have theoretical results like
Any language which is LR(K) for a given k is also LR(1) J

No need to consider lookaheads of more than one symbol

We have automated tools to do it: YACC. J

Works like Lex and can be combined

OSKomp'08 | Parsing

LR parsing has the following features:
m May be applied to a wide class of grammars and languages

m Grammar transformations are usually minimal

m The analysis time is linear in the length of the input

m Syntax errors discovered on the first inadmissible symbol
m It is well supported by tools

OSKomp'08 | Parsing

Recall — Goal

Identify if (input) token streams satisfy the program syntax

We need
m Expressive way to describe the syntax
= LL(1) and LR(1) grammars, ...
m Acceptor that determine if the token streams satisfy the

syntax of the program
= Recursive-Descent and Shift-Reduce Parsers

OSKomp'08 | Parsing

