
Computer Programming I
Lecture 3a: Lists and Strings

Johan Öfverstedt

Lists
We have seen in previous lectures and labs that lists stores / represents a
sequence of objects / values, each being addressed by an integer index:

xs: 0, 1, ..., len(xs)-1 -> elem_0, elem_1, ..., elem_(len(xs)-1)

Index 0 1 2 3 4

Värde 'a' 'B' 'c' 'D' 'e'

Slicing - Manipulation of sublists
Slicing is an operation that extracts a subset of a list in a systematic way, to
enable reading or changing the list in place.

xs = [1, 2, 3, 4, 5, 6, 7]
print(xs[1:-1:2])
>> [2, 4, 6]
print(xs[1:-2:2])
>> [2, 4]
xs[1::2] = [13, 15, 17]
print(xs)
>> [1, 13, 3, 15, 5, 17, 7]

Slicing can be used to pick out sublists
(with start:stop:step notation)

and you can also assign to the sublist
to change the existing list in place

Negative numbers for start/stop index
means indexing from the end of the
list:
-n -> len(xs)-n

Slicing - Manipulation of sublists
We can obtain a slicing in reverse order by providing a negative step, and a start
index that is larger than stop:

xs = [1, 2, 3, 4, 5, 6, 7]
print(xs[5:2:-1])
>> [6, 5, 4]

Slicings, just like range(start, stop, step),
Uses half-open intevals:
[start, stop)
[2:5] -> index [2, 3, 4]

Slicing - Manipulation of sublists
Since -1 refers to the last element and -2 the penultimate element etc (which helps
so you don’t have to write len(xs)-1, len(xs)-2, ..., etc) it is easy to make hidden
mistakes that don’t give an error message
xs = [1, 2, 3, 4, 5, 6, 7]
ys = []
for i in range(len(xs)):
 xss = xs[i-1:i+2]
 ys.append(sum(xss)/3.0)
print(ys)
>> [0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 4.333333333333333]

Slicing can be used to pick out sublists
(with start:stop:step notation)

and you can also assign to the sublist
to change the existing list in place

Logical error. Based on the sum of an empty slicing

Slicing - Indexing out of bounds
If you slice a list in a way that the boundaries are out of bounds, you do not get an
error which you do get if you index out of bounds for a single element:

x = [1, 2, 3]
x[5]
>> Traceback (most recent call last):
>> File "<stdin>", line 1, in <module>
>> IndexError: list index out of range
x[4:5]
>> []

List Building
Lists in Python can be constructed in many different ways:

- Enumeration ([])
- Concatenation (+)
- Repetition (*)
- Insertion (insert/append)
- Generator
- List comprehension

Enumeration
You may create a list by enumerating the elements one by one in the code:

xs = [1, 2, 3, 4, 5]
print(xs)
>> [1, 2, 3, 4, 5]

If you are able to write down all the elements of the list, especially if they do not
follow a simple mechanical rule, it may be easiest to enumerate them.

For this specific example, you can just do this:
xs = list(range(1, 6))

Concatenation
Given two lists, you can concatenate them together to form a longer list containing
the contents of both:

xs1 = [1, 2, 3, 4, 5]
xs2 = [6, 7, 8, 9, 10]

xs3 = xs1 + xs2

print(xs3)
>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Repetition
Given a list you can repeat the contents of the list a number of times:

xs1 = [1, 2, 3, 4, 5]
xs2 = xs1 * 3

print(xs2)
>> [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Insertion with insert/append
You can construct a list element by element by adding them into a list with append
and insert:

list.append(value): adds a new element last (and grows the list by one)
list.insert(index, value): adds a new element at a given index, grows
the list by one, and displaces all the following elements.

Insertion with insert/append
You can construct a list element by element by adding them into a list with append
and insert:
xs1 = []
xs1.append(3)
xs1.append(4)
xs1.append(5)
xs1.insert(0, 1) # Lägger till 1 på index 0
xs1.insert(1, 2) # Lägger till 2 på index 1

print(xs1)
>> [1, 2, 3, 4, 5]

Generator
You can construct a list by making a generator, and then converting that into a list:

def sq_gen(n):
 for i in range(1, n+1):
 yield i*i

xs = list(sq_gen(5))
print(xs)
>> [1, 4, 9, 16, 25]

List comprehension
You can construct a list in a very compact, and elegant way with the list
comprehension syntax:

xs = [x for x in range(1, 6)]
print(xs)
>> [1, 2, 3, 4, 5]

xs = [x*x for x in range(1, 6)]
print(xs)
>> [1, 4, 9, 16, 25]

List comprehension
You can produce multiple values at the same time with tuples

xs = [(x, x*x) for x in range(1, 6)]
print(xs)
>> [(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

Or with lists (to form a list of lists):
xs = [[x, x*x] for x in range(1, 6)]
print(xs)
>> [[1, 1], [2, 4], [3, 9], [4, 16], [5, 25]]

Elementary algorithms for lists
Find - linear search - finds the index of a sought value

def find(haystack, needle):
 for i in range(0, len(haystack)):
 if haystack[i] == needle:
 return i
 return None

Built-in functions in Python
haystack.index(needle)

(gives ValueError if the needle is not found)

Requires len(haystack) iterations
and comparisons in the worst-case
when the needle is not found.

Elementary algorithms for lists
Find - binary search - finds the index of a sought element in a sorted list.

def find_sorted(haystack, needle):
 i1 = 0
 i2 = len(haystack)
 while i1 < i2:
 mid_ind = i1 + (i2-i1)//2
 if haystack[mid_ind] == needle:
 return mid_ind
 elif needle < haystack[mid_ind]:
 i2 = mid_ind
 else:
 i1 = mid_ind + 1
 return None

Requires
log_2(len(haystack)) iterations
and comparisons [32 comparisons for
~4 billion elements in the list.]

log_2 is the base 2 logarithm.

EXTRACURRICULAR

Elementary algorithms for lists
Minimum (Maximum, change < into >)

def minimum(xs):
 assert(len(xs)>0)
 ind = 0
 value = xs[0]
 for i in range(1, len(xs)):
 if xs[i] < value:
 value = xs[i]
 ind = i
 return (value, ind)

Built-in function in Python
min(xs) gives smallest value,
index(min(xs)) gives the index of the
smallest value

Programming with lists
Much of programming can be summarized with:
Interaction with the hardware, graphics, input/output, networking, etc.

AND

List construction - Creation of lists from algorithms or existing data.
List transformations sorting conversion, arithmetic
Reduction of lists (minimum/maximum, summation, etc)

Python has great features that makes it easy to manipulate lists, such that all
those steps are easy and succinct, requiring little code.

Strings
Strings are sequences of characters. Much of what we can do with lists, we can do
with strings:

s = 'Hello, world!'
print(s)
>> Hello, world!
s_upper_list = [x.upper() for x in s]
print(s_upper_list)
>> ['H', 'E', 'L', 'L', 'O', ',', ' ', 'W', 'O', 'R', 'L', 'D', '!']
ss = ''.join(s_upper_list)
print(ss)
>> HELLO, WORLD!

s.lower() gives a string
where all upper-case letters
have been transformed into
lower-case and s.upper()
does the opposite.

s.join(lst) joins together
the strings in lst inserting a
s between each string.

Strings
Strings are sequences of characters. Much of what we can do with lists, we can do
with strings:

s = 'Hello, world!'
print(s[-2:1:-2])
>> drw,l
print(type(s[2]))
>> <class 'str'>

If we use slicing and extracts an
element of a string, we obtain a
new string, containing a single
character… not a value of a
different data-type like in many
other languages.

Strings
Strings are sequences of characters. Much of what we can do with lists, we can do
with strings:

s1 = 'abc'
s2 = 'abd'
print(s1 < s2)
>> True
print(s2 < s1)
>> False

Comparisons of strings are
done lexicographically
(character by character
from left to right)
[Also holds true for lists]

Strings are immutable
s = 'Hello, world!'
s[1:5]

>> 'ello'

>> s[1:5] = 'olle'

>> Traceback (most recent call last):
>> File "<stdin>", line 1, in <module>
>> TypeError: 'str' object does not support item assignment

You can not modify a string after it has
been created, only create new strings with
different content.

Strings are immutable
s = 'Hello, world!'
ss = s[0:1] + s[4:0:-1] + s[5:]

print(ss)
>> Holle, world!

