
Computer Programming I
5 credits

Teacher: Hans Karlsson

E-post: Hans.Karlsson@it.uu.se

+ A large number of teaching assistants

1

mailto:johan.ofverstedt@it.uu.se


2

Lecture 1: Course information and introduction to  

programming with Python

The course consists of

● 6 lectures

● A large number of lab sessions, with 5 mandatory assignments (3 hp)

● Written exam (2 hp)

The lab sessions with individual practical work, at your computers, is essential for  

active learning and learning through repetition.

The lectures provide increased depth and theory to complement the assignments.



The course website

http://www.it.uu.se/edu/course/homepage/prog1/currentCourse/english/index.html

The course website includes 

10  web-based lessons which  

constitute the practical part of 

the  course, with a set of

mini-lessons  to be regarded 

as an extra  resource.

Course information is also given

on the course page in Studium

3



4

10 web-based lessons

Lesson 1: Python Fundamentals

Lesson 2: Development environment IDLE  

Lesson 3: The World of Turtles

Lesson 4: Writing functions

Lesson 5: More about functions, objects Lesson 10: Traffic simulation (MA5)  

and methods (MA1)

Lesson 6: Lists and tuples (MA2)  

Lesson 7: Working with text (MA3)  

Lesson 8: Introduction to classes  

Lesson 9: Data management (MA4)

MA = Mandatoryassignment



5

Deadlines for reporting the mandatory assignments

MA 1: 17 /9

MA 2: 24/9

MA 3: 30/9

MA 4: 7/10

MA 5: 14/10

Scheduled dates after 14/10 is mainly for students who need to correct their assignemtns.

It is allowed to present the assignments before the deadline.

Exam: 21/10

Remember that you must sign up for the exam in advance to be  eligible to take it



6

Lab sessions

The lab sessions, which can take place remotely over the internet if you prefer

that, will work as  follows: To ask for help, advice or the ability to discuss your 

code with a TA (or  sometimes me), you should add your name to a shared 

Google-document, which  will be shared soon, where you write the following 

information at the bottom of the  list:

Name, Zoom-link

You will create your own Zoom-meeting and add your link at the bottom of the  

list/queue. When your turn comes up, a TA will connect to your Zoom-meeting and  

help you out, or allow you to present your mandatory assignment orally.



7

Programming

Programming is a process where a set of instructions is put together to describe a  

computational problem and/or its solution in a formal language which can be  

interpreted and executed by a computing machine. There are various kinds of  

programming paradigms.

Functional programming: A program is a function (like in mathematics) where  

evaluating the function is executing the program.

Procedural programming: A program is a sequence of operations, processed in  

order, where each operation may read/create/update the state of the program or  

cause an effect to happen such as print to the screen.



8

Programming

Programming is a process where a set of instructions is put together to describe a  

computational problem and/or its solution in a formal language which can be  

interpreted and executed by a computing machine. There are various kinds of  

programming paradigms.

Declarative programming: A program is written as a problem/logic description  

and the language finds a solution without requiring specification of the solution.  

Object-oriented programming: A compatible paradigm (with the others) where  

concepts are collected in classes/objects that contain logic/functions/procedures  

and data that can then be used as basic higher-level building blocks.



9

Programming can take on different forms

Text-based languages where the logic and program behavior is described as a  

textual code:

x = 5 * 7  

print(x)  

y = x + 3  

print(y)



Programming can take on different forms

Visual node-based programming

5

7

* ? print

10



11

Python

Python is a dynamically typed general-purpose programming language (often  

considered a scripting language) that can run programs without pre-generation of  

native machine-code.

Terminology

Machine-code: A binary code describing instructions of data that acomputer  

processor can read and execute in a well-defined manner.

Compilation: A process of transforming code from a higher abstraction level into  

for example machine-code (or byte-code which is somewhere in between).



12

Interactive Python in the Terminal

Python can be written and executed interactively in a terminal, line by line, which

can be a convenient way of quick experimentation. This is useful when starting to

learn programming, and when you need to quickly test out a small use-case.

C:\Users\hans>python3

Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64  

bit (AMD64)] :: Anaconda, Inc. on win32

Type "help", "copyright", "credits" or "license" for more  

information.



13

IDE (Integrated Development Environment)

There are a large number of IDEs that can simplify the writing, reading, and testing  

of Python code.

- IDLE : Included with Python

- Thonny

- Visual Studio Code : A free open-source IDE from Microsoft

-PyCharm : A commersial IDE with many powerful features (academic licenses  

can be obtained)



14

Anaconda: APython-distribution

Anaconda (https://www.anaconda.com/distribution/)

Is a distribution of Python that contains a lot of popular packages that help with

scientific computing, plotting, graphics, numerical computation (linear algebra),

optimization, and much more.

https://www.anaconda.com/distribution/


15

Examples of Python-code (some arithmetic)

5*2**4

>> 80

5*(2**4)

>> 80

1+1*2+3

>> 6

The arithmetic in Python follows the usual priority rules (multiplication before  

addition etc).



16

Logic operators in Python

a == b : test for equality of value

not (a) : negation of expression

a is b : test for equality (identity)

a < b, a <= b, a > b, a >= b : inequalities



17

Arithmetic operators in Python

a + b : addition

a - b : subtraction

a * b : multiplication

a / b : floating-point division

a // b : integer division

a ** b : a raise to the power of b

a % b : modulo / remainder of division, 5 % 3 == 2



18

Variables: Association of a name and a value

a = 2

b = 7

c = a**b  

print(c)

>> 128

print(type(c))

>> <class 'int'>

c contains an integer.

a = 2.0

b = 7

c = a**b  

print(c)

>> 128.0

print(type(c))

>> <class 'float'>

c contains a floating-point number  

(float).



19

Comments

# This is a comment. It will be ignored by Python.

'''

This is

a multiline

comment.

'''

Comments are very important for documentation of what code does, how it does it,  

description of assumptions, and more. Obvious facts, known to all compentent  

Python programmers should not be included in comments.



20

Strings - A firstexample

name = ’Hans'

s = f'Hi, my name is {name}.'  

print(s)

>> Hi, my name is Hans.

A string is a sequence of characters forming a chunk of text. Each character is  

represented by one or more integer-values given by a standard code (Utf-8).

The f-string syntax allows creation of new strings from other strings and values.



21

More examples with strings

You can also create strings with the following syntax:  

s = 'Hi, my name is %s' % ’Hans'

The problem with this syntax is that it is easier to make mistakes  

s = 'a = %d, b = %d, c = %d' % (a, b)

>>

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: not enough arguments for format string



22

Writing to the screen with “print”

The procedure print is used to write to the screen / the terminal.

print('a', 'b', 'c')

>> a b c

print('a', 'b', 'c', sep=', ')

>> a, b, c

print('a', end=', '); print('b', end=', '); print('c')

>> a, b, c



23

Conditional statements (if)

a = 7

if a > 0:

print('a is positive')  

elif a == 0:

print('a is zero')  

else:

print('a is negative')

>> a is positive

elif and else are not mandatory  

and can be omitted if not  

needed.



24

Input from the keyboard

input - Input is a procedure that prints a string to the screen, reads an input and  

returns the typed text:

name = input('Name? ')  

print(f'Hi {name}')

>> Name? Hans

Hi Hans

The f-string syntax allows creation of new strings

from other strings and values.



25

Loops and variable mutation

i = 10

while i > 0:

if i % 2 == 0:  

print(i)

i = i - 1

The while-loop continues its execution  

until the condition (here i > 0) is False.



Indentation (distance to the left margin)

I Python, the indentation of the code  

carries significant semantic meaning.

if a > 0:

print('a', end='')

print('b', end='')

If a > 0:

print('a', end='')

print('b', end='')

Prints 'ab', if a > 0, does nothing  

otherwise

Prints 'ab', if a > 0, ‘b’ otherwise

26

Important!



27

Loops within loops

i = 0

while i < 3:  

j = 0

while j < 4:  

print(f'({i}, {j})')  

j = j + 1

i = i + 1



28

Loops within loops

i = 0

while i < 3:  

j = 0

while j < 4:  

print(f'({i}, {j})')  

j = j + 1

i = i + 1

Output:  

(0, 0)

(0, 1)
(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)



29

Example: Factorial (floating-point)

fac = 1.0

n = 7

while n > 0:  

fac = fac * n  

n = n - 1

print(fac)

>>5040.0



30

Example: Factorial (floating-point)

fac = 1.0

n = 1000

while n > 0:  

fac = fac * n  

n = n - 1

print(fac)

>>inf



Example: Factorial (integer)

fac = 1

n = 1000

while n > 0:  

fac = fac * n  

n = n - 1

print(fac)

40238726007709377354370243392300398571937486421071463254379991042993851239862902059204420848696940480047998861019719605863166687299480855890132382966994459099742450408707375991882362

77271887325197795059509952761208749754624970436014182780946464962910563938874378864873371191810458257836478499770124766328898359557354325131853239584630755574091142624174743493475534

28646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025

47858932076716913244842623613141250878020800026168315102734182797770478463586817016436502415369139828126481021309276124489635992870511496497541990934222156683257208082133318611681155

36158365469840467089756029009505376164758477284218896796462449451607653534081989013854424879849599533191017233555566021394503997362807501378376153071277619268490343526252000158885351

47331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911

90375403127462228998800519544441428201218736174599264295658174662830295557029902432415318161721046583203678690611726015878352075151628422554026517048330422614397428693306169089796848

25901254583271682264580665267699586526822728070757813918581788896522081643483448259932660433676601769996128318607883861502794659551311565520360939881806121385586003014356945272242063

44631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900

14076731044664025989949022222176590433990188601856652648506179970235619389701786004081188972991831102117122984590164192106888438712185564612496079872290851929681937238864261483965738

22911231250241866493531439701374285319266498753372189406942814341185201580141233448280150513996942901534830776445690990731524332782882698646027898643211390835062170950025973898635542

77196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254

74217358240106367740459574178516082923013535808184009699637252423056085590370062427124341690900415369010593398383577793941097002775347200000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 31
00000000000000000000



32

Lists

Often you want to/require access to more than a limited number of values, easily  

accessible without requiring a name for each. Then a list is the most common  

data-structure.

a = [1, 1, 2, 3, 5, 8, 13, 21]

print(a)  

print(type(a))

>> [1, 1, 2, 3, 5, 8, 13, 21]

<class = 'list'>



33

Lists

a = [1, 1, 2, 3, 5, 8, 13, 21]

i = 0

while i < len(a):  

x = a[i]  

print(x**2)

i = i + 1



34

Lists

a = [1, 1, 2, 3, 5, 8, 13, 21]

i = 0

while i < len(a):  

x = a[i]  

print(x**2)

i = i + 1

Output

>> 1

1

4

9

25

64

169

441



35

Lists

a = [1, 1, 2, 3, 5, 8, 13, 21]  

b = []

i = 0

while i < len(a):  

x = a[i]  

b.append(x**2)  

i = i + 1

print(b)

Resultat

>> [1, 1, 4, 9, 25, 64, 169,

441]



36

Iteration over lists, in reverse

a = [1, 1, 2, 3, 5, 8, 13, 21]

i = len(a)-1  

while i >= 0:

print(a[i])  

i = i - 1

Output

>> 21

13

8

5

3

2

1

1



37

Lists

len(list) - gives the length of the list, in number of items  

list[0] - gives the first element in the list

list[len(lista)-1] or list[-1] - gives the last element in the list

Python uses 0-based indexing, unlike e.g. Matlab that uses 1-based indexing.



38

for-loop

A significant problem with the while-loop is that it invites logical errors.  

See the following code:

i = 0

while i < 10:  

print(i, end='')

What happens when we run it?



39

for-loop

A significant problem with the while-loop is that it invites logical errors.  

See the following code:

i = 0

while i < 10:  

print(i, end='')

What happens when we run it?

>> 00000000000000000000000000000000000000000000000000000000…



for-loop

A significant problem with the while-loop is that it invites logical errors.  See the 

following code:

i = 0

while i < 10:  

print(i,end='')

The problem is that iterations with the while-loop often requires three different  

pieces of code to be correct:

Initialization of loop variable (i)  

The loop condition

Updating of the loop variable (i) 40



41

for-loop (a better loop, most of the time)

print(i, end='')

for i in range(10):

range(10) - creates a sequence of

Resulterar i:

>> 0123456789

integers from 0 up to (but not  

including) 10

A half-open interval [0, 10).



42

for-loop

You can iterate directly over lists:

a = [1, 3, 7, 11, 13] 1

3

for i in a: 7

print(i) 11

13

Results in:

>>

Here you don’t need to think about indexing at all. The for-loop takes care of this for you.



43

for-loop with range (in reverse)

It is also possible to create ranges which count in reverse:

for i in range(9, -1, -1):

print(i, end=' ')

>> 9 8 7 6 5 4 3 2 1 0



for-loop with range (in reverse)

It is also possible to create ranges which count in reverse:

Start value

for i in range(9, -1, -1):

print(i, end=' ')

Stop value

>> 9 8 7 6 5 4 3 2 1 0

Step

44



45

Data-types

Data-types can be thought of as sets of values that a variable can take on, and the  

basic-operations that can be applied to those values.

Today we have seen several different data-types:

- Integers (int)

- Floating-point numbers / decimal numbers (float)

- Textsequences / strings (string)

- Lists

- Logical, boolean, values (bool) : False / True



46

Data-types

In many programming languages, one must declare the data-type of a variable,  

and after that it can not take on values of any other data-type. In Python this is not  

the case. You can (but it is often poor coding practice to) assign values of different  

types to a single variable at different occations:

a = 7 # Now a is an integer  

a = 'hello' # Now a is a string  

a = 3.14 # Now a is a float



47

Terminology

Assignment - Change of a variable’s value  

Sequence - The order of operations of a program  

Iteration - Repetition of a process (e.g. while / for)

Selection - Choice of operations to perform based on logical conditions


