
Division of Computing Science
Department of Information Technology
Uppsala University

Re-Exam in Programming in Python (1TD327), 5 ECTS

• Note: Answers should be written in English. All problems must be solved using Python
code. Use short, appropriate and descriptive names for all your variables and functions.
Note that your grade will be affected negatively if:

– your code is unclear and/or hard to read

– identical snippets of code are repeated several times (copy/paste)

– common data structures (lists, dictionaries, strings) are not used correctly

• Tools : Any electronic devices or any other formula books are not allowed!

• Date: June 10, 2022, 8:00 – 13:00.

• Place: Fyrislundsgatan 80, sal 1

• The grading system:

– The exam has two parts: (A1.-A10.) Basic and (B1.-B16.) Advanced.

– In order to Pass, you need to get at least 75% of the points from Part (A).

– If Part (A) is failed, part (B) will not be graded.

– To get Grade 4, you need to pass part (A) and get at least 50% of the points
from part (B).

– To get Grade 5, you need to get at least 85% of the points both from part (A)
and (B).

Part A

Estimated time required: 1 hour

Each correct answer is worth 1 point.

1. Given the definitions in the code below, choose the expression that returns the following
string: ’Balance on account for Smith, John at the end of January is 31.45’
Code:

client_name = "John"

client_surname = "Smith"

month = "January"

balance = 31.45

Select one alternative:
A.

f’Balance on account for {client_surname}, {client_name} at the

end of {month} is {balance}’

B.
f’Balance on account for’ + {client_surname} + ’,’ + {

client_name} + ’at the end of’ + {month} + ’is’ + {balance}

C.
’Balance on account for’, client_surname ,’,’, client_name , ’at

the end of’, month , ’is’, balance

D.
f’Balance on account for {client_surname}, {client_name [0]} at

the end of {month [0:3]} is {balance}’

2. Choose the answer that correctly classifies the entities used in the following code snippet:
Code:

import math

def triangle_area(a, b, c):

s = (a + b + c)/2

t = s*(s-a)*(s-b)*(s-c)

r = math.sqrt(t)

return r

Select one alternative:

A. variables: math, triangle area, r
functions: s, t, r
modules: math.sqrt

B. variables: a, b, c, s, t, r
functions: triangle area, math.sqrt
modules: math

Page 2

C. variables: math.sqrt, triangle area
functions: =, +, /, *, -
modules: import, def, return

D. variables: import, def, return
functions: s, t, r
modules: triangle area, math.sqrt

3. Choose the correct output of the following code snippet:
Code:

[z*z for z in range(0, 7) if z%2==0]

Select one alternative:

A. [’0*0’, ’2*2’, ’4*4’, ’6*6’]

B. []

C. [0, 4, 16, 36]

D. [[], [2, 2], [4, 4, 4, 4], [6, 6, 6, 6, 6, 6]]

4. Given the following definition of the class Dice, choose the answer that only contains
valid Python statements
Code:

import random

class Dice:

def __init__(self , sides):

self.sides = sides

self.value = random.randint(1, self.sides)

def __str__(self):

return f’Sides: {self.sides:2d}, value: {self.value:2d}’

def roll(self):

self.value = random.randint(1, self.sides)

Select one alternative:
A.

d1=Dice (7)

d2=Dice(’six’)

d1.roll()

d2.roll()

B.
d=Dice (6)

d.roll()

print(d)

Page 3

C.
d=Dice (6)

d.roll()

print(d.value ())

D.
d1=Dice (2000)

d2=Dice (6)

d1.roll()

d2.roll()

is_d1_higher = d1 > d2

5. What is a variable in Python and what are its attributes?
Select one alternative:

A. A variable is a Python object of class Variable.

B. A variable in Python is any entity passed to a function and used in the function
body.

C. A variable in Python has a name and a value. The value (as well as the type)
can be changed using the assignment operator =.

D. A variable in Python is any entity returned by a function through the use of
return statement.

6. What is the output of the following code? Code:

student = {1: {’name’: ’Emma’, ’age’: 27, ’points ’: [7.0, 0.5, 3.5,

2.0]} ,

2: {’name’: ’Mike’, ’age’: 22, ’points ’: [4.0, 2.5, 3.0,

3.5]}}

student.update ({3: {’name’: ’Bob’, ’age’: 26, ’points ’: [5.0, 0.5, 4.5,

3.0]}})

print(student.keys())

print(sum(student [2][’points ’]))

bob = student.pop(’Bob’)

print(bob)

Select one alternative:
A.

dict_keys ([1, 2, 3])

13.0

{’name’: ’Bob’, ’age’: 26, ’points ’: [5.0, 0.5, 4.5, 3.0]}

B.
dict_keys ([1, 2, 3])

13.0

KeyError: ’Bob’

C.
dict_keys ([’name’, ’age’, ’points ’])

13

{’name’: ’Bob’, ’age’: 26, ’points ’: [5.0, 0.5, 4.5, 3.0]}

Page 4

D.
dict_keys ([’name’, ’age’, ’points ’])

13.0

{’name’: ’Bob’, ’age’: 26, ’points ’: [5.0, 0.5, 4.5, 3.0]}

7. What is stored in the variable counts? Code:

my_list = [1, 2, 3, 4, 5, 6, 7, 100, 110, 21, 33, 32, 2, 4]

count = 0

for n in my_list:

if n % 2 == 0:

count +=1

Select one alternative:

A. The cumulative sum of every other number in the list, that is 161.

B. The cumulative sum of all even numbers in the list, that is 260.

C. The number of even numbers in the list, that is 8.

D. Nothing because the code exits with IndexError: list index out of range

8. The function below should determine if the number given as input argument is an integer
power of three. That is for example,

print(is power of three(3)) should print True,

print(is power of three(5)) should print False,

print(is power of three(9)) should print True.

Which line(s) should you uncomment in the function such that the code can finish suc-
cessfully for any number n?

def is_power_of_three(n):

"""

Returns True if n is a power of 3, else False.

"""

if n == 1:

return True

a)

else:

break

while n != 0 and n % 3 == 0:

n = n / 3

if n == 1:

return True

b)

n += 1

Page 5

c)

else:

return False

d)

return False

Select one alternative:

A. The lines

else:

break

B. The line

n +=1

C. The lines

else:

return False

D. The line

return False

9. What is the output of the following code?
Code:

a, b, c, d = 12, 3, 5, True

if a >= 0 and d:

if b < 2:

print("Hi")

elif c > 3:

print("Hello")

else:

print("Good bye!")

Select one alternative:

A. Good bye!

B. Hello

C. Hi

Hello

D. Hi

10. Which is the output of the code snippet below?

Page 6

a = 10

def dummy_function(a):

a = 20

print(a)

a = ’ten’

dummy_function(a)

A. ten

B. 20

C. 10

D. NameError: name ’a’ is not defined

Part B

Simulation of a Simple War card game

Estimated time required: 2 hours 30 minutes

For this part, you are expected to model a simplified version of the ”Simple War” card
game. The tasks for you to complete are to implement Python classes for representing various
kinds of objects that are needed in the game, as well as a script for simulating playing turns.
Make sure to remove the pass and the ... instructions in the code when you implement
the different tasks.

Do not forget to have a look at the appendix where you are provided with documentation
for some Python methods, you might want to use them for completing the assignment.

Description of the rules for playing Simple War

The Simple War game uses a set of playing cards that consists of 52 cards, each card being
characterized by a suit and a rank:

• There are 4 suits: Hearts, Clubs, Spades, and Diamonds,

• There are 14 ranks (valued from 2 to 14 points): 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen,
King, Ace.

An illustration of the game is shown on Figure 1.
At the beginning of the game, the main deck of 52 shuffled cards is dealt to the two

players, each of them gets the same number of cards, that is 26 cards. The players keep
their cards hidden. In order to win the game, each player wants to have the most cards in
its deck, ideally all cards.

A turn is played as follows:

Page 7

Figure 1: Example of card decks of two players in a Simple War game

1. The players take the top cards of their deck, flip them and put the cards face-up in
front of each other.

2. The player with the highest card wins and takes both cards then adds them to the
bottom of its deck. Aces are the highest card and 2s the lowest. Suits are ignored. For
instance, ”Queen of Heart” is higher than ”Seven of Spades”.

3. If the two cards flipped are equal, for example ”Jack of Diamonds” and ”Jack of Clubs”,
they are left in the center and no player takes any card.

Turns are played until the players agree on finishing the game, or if one of them has no more
cards.

Description of the Python classes and objects used for modelling the game

Three classes are used in the game modelling:

• The Card class (code listing 2) that is used for modelling each of the 52 cards used in
the game. The constructor of the class takes 2 input parameters that are:

– suit: (string), suit of the card,

– rank: (string), rank of the card.

• The Deck class (code listing 4) that models a deck of cards. The constructor does not
take any input parameter. An instance of the Deck class can be used for modelling
both the deck shared by the two players as well as the cards in the hand of a player.

• The SimpleWar class (code listing 6) that implements a few methods for playing the
game. The constructor does not take any input parameters.

The two players are modeled with one dictionary each. The dictionary representing a
player contains two items:

• name: (string), name of the player,

• deck: (Deck object), cards in the hand of the player.

Page 8

Tasks to solve

Provided with a short script for initializing the game in the code listing 1, the tasks for you
to solve are described below (B.1. to B.14.). Note that the task B.14. is a bonus task, that
means the points you can get with it are not taken into account for defining the grading
thresholds.

B.1. [3 points]

Implement the constructor of the Card class:

• Define an attribute suit from the input parameter suit.

• Define an attribute rank from the input parameter rank.

• Define an attribute pts: value of the card, that is the number of points of the card.

B.2. [2 points]

Implement wins(self, adversary card) method of the Card class. The variable adversary card

is another instance of the Card class. The method should return -1 if the adversary card is
worth more points than the local class instance, 1 if the adversary card is worth fewer points
than the local class instance, or 0 if both cards are equally valued.

B.3. [2 points]

Implement the str (self) method of the Card class, based on the output example in the
code listing 3.

B.4. [1 point]

Implement the constructor of the Deck class: define an attribute set of cards that models
the cards in the deck and that is initialized to an empty list of cards.

B.5. [1 point]

Implement the method nb of cards(self) of the Deck class, based on the output example
in the code listing 5. This method returns the number of cards in the deck.

B.6. [1 point]

Implement the add cards(self, new cards) method of the Deck class, based on the output
example in the code listing 5. This method adds all cards from the list new cards to the
bottom of the deck. Note that the first card in the attribute set of cards is the card at
the bottom of the deck, the last card in the attribute set of cards is the card on the top.

Page 9

B.7. [1 point]

Implement the method shuffle cards(self) of the Deck class, based on the output example
in the code listing 5. This method shuffles the cards in the deck, that means it randomly
changes the order of the cards.

B.8. [2 points]

Implement the method pick top cards(self) of the Deck class, based on the output exam-
ple in the code listing 5. This method returns the top card from the deck if it is not empty.
If the deck is empty, the methods returns None.

B.9. [1 point]

Implement the method empty deck(self) of the Deck class, which removes all cards from
the deck.

B.10. [4 points]

Implement the constructor of the SimpleWar class:

• Create two players player1 and player2 named name1 and name2. Each player is
initialized with an empty set of cards in its hand.

• Create a main deck of 52 cards, that is all cards in a classical set of playing cards.
Shuffle the cards in this deck.

Look carefully at the code output in the code listing. 7.

B.11. [3 points]

Implement the deal cards(self) method of the SimpleWar class, based on the output
example in the code listing 7. This method deals half of the cards of the main deck to each
player, that implies that the main deck is empty after this operation.

B.12. [5 points]

Implement the play turn(self) method of the SimpleWar class, based on the output ex-
ample in the code listing 7. This method plays a turn of the simple war game as follows:

1. Each player picks the top card of its deck and adds them to the main deck.

2. The player with the highest card (most points on the card) wins and put the two cards
in its deck. The main deck is left empty. If ever both cards are equal, there is war.
The cards are left in the main deck.

This method should return the number of cards in the deck of each player after the turn
is played.

Page 10

B.13. [2 points]

Implement the winner(self) method of the SimpleWar class. This method returns the
player which has the most cards.

B.14. Bonus task! [4 points]

Simulate a game! You can assume that all classes and functions are written and saved
together in the same file. Complete the code listing 7:

1. Instantiate a game with the variable game and assume the two players are named ”Piff”
and ”Puff”.

2. Deal the cards to the players.

3. Play turns until either one of the players has no more cards, or 100 turns have been
played.

Listing 1: Initialization

import random

suits = [’Hearts ’,’Clubs ’,’Spades ’,’Diamonds ’]

points = {’Two’: 2, ’Three’: 3, ’Four’: 4, ’Five’: 5, ’Six’ : 6,

’Seven’ :7, ’Eight’: 8,’Nine’:9, ’Ten’:10,

’Jack’:11, ’Queen’: 12,’King’: 13,’Ace’:14}

Listing 2: Card class

class Card():

"""

Models a playing card.

"""

def __init__(self , suit , rank):

Task B.1.:

pass

def wins(self , adversary_card):

Task B.2:

pass

def __str__(self):

Task B.3.:

pass

Page 11

Listing 3: Card instance example

mycard = Card(’Clubs’, ’Ace’)

print(f’My card is {mycard} and is worth {mycard.pts} points.’)

Output:

My card is Ace of Clubs and is worth 14 points.

Listing 4: Deck class

class Deck():

"""

Models a deck of playing cards.

"""

def __init__(self):

Task B.4:

pass

def nb_of_cards(self):

Task B.5:

pass

def add_cards(self , new_cards):

Task B.6:

pass

def shuffle_cards(self):

Task B.7:

pass

def pick_top_card(self):

Task B.8:

pass

def empty_deck(self):

Task B.9:

pass

def __str__(self):

return ’(bottom) ’ + ’, ’.join([card.__str__ () for card in self.

set_of_cards]) + ’ (top)’

Listing 5: Deck instance example

a_deck = Deck()

a_deck.add_cards ([mycard , Card(’Spades ’, ’King’), Card(’Clubs’, ’Queen’),

Card(’Hearts ’, ’Three’)])

Page 12

print(f’There are {a_deck.nb_of_cards ()} cards in the deck.’)

print(’\nThe cards are: ’, a_deck)

print(’\nThe top card is: ’, a_deck.set_of_cards [-1])

print(’\nShuffling the cards!’)

a_deck.shuffle_cards ()

print(’\nPicking the top card: ’, a_deck.pick_top_card ())

print(f’\nNow , there are {a_deck.nb_of_cards ()} cards left in the deck.’)

Output:

There are 4 cards in the deck.

The cards are: (bottom) Three of Hearts , Queen of Clubs , King of Spades ,

Six of Clubs (top)

The top card is: Six of Clubs

Shuffling the cards!

Picking the top card: Three of Hearts

Now , there are 3 cards left in the deck.

Listing 6: SimpleWar class

class SimpleWar ():

"""

Methods for simulating a simple war card game.

"""

def __init__(self , name1 , name2):

Task B.10:

pass

def deal_cards(self):

Task B.11:

pass

def play_turn(self):

Task B.12:

...

print()

print(’Card 1: ’, card1)

print(’Card 2: ’, card2)

print(self.main_deck)

Page 13

if card1 is None or card2 is None:

print(’\nGame over!’)

...

print(f"{self.player1[’name ’]} wins the turn")

...

print(f"{self.player2[’name ’]} wins the turn")

...

print(’War!’)

...

def winner(self):

Task B.13:

pass

Listing 7: SimpleWar game example

game = ...

print(game.player1)

print(game.player2)

...

print(game.player1[’deck’])

print(game.player2[’deck’])

n1, n2 = game.player1[’deck’]. nb_of_cards (), game.player2[’deck’].

nb_of_cards ()

max_n_turns = 100

...

...

print(f"\nAnd the winner is... {game.winner ()[’name ’]}!")

Output

{’name’: ’Piff’, ’deck’: <__main__.Deck object at 0x7f6c11642e50 >}

{’name’: ’Puff’, ’deck’: <__main__.Deck object at 0x7f6c11642850 >}

(bottom) Two of Clubs , Two of Diamonds , Four of Diamonds , Four of Clubs ,

Two of Spades , Two of Hearts (top)

(bottom) Three of Diamonds , Four of Hearts , Three of Clubs , Four of Spades

, Three of Spades , Three of Hearts (top)

...

Card 1: Three of Hearts

Card 2: Three of Diamonds

(bottom) Three of Diamonds , Three of Hearts (top)

Page 14

War!

Card 1: Three of Clubs

Card 2: Two of Clubs

(bottom) Two of Clubs , Three of Clubs , Three of Diamonds , Three of Hearts

(top)

Piff wins the turn

Card 1: Three of Spades

Card 2: Four of Hearts

(bottom) Four of Hearts , Three of Spades (top)

Puff wins the turn

Card 1: Four of Spades

Card 2: Two of Hearts

(bottom) Two of Hearts , Four of Spades (top)

Piff wins the turn

Card 1: Two of Spades

Card 2: Four of Hearts

(bottom) Four of Hearts , Two of Spades (top)

Puff wins the turn

...

And the winner is ... Piff!

Page 15

Plagiarism detection at an art school

Estimated time required: 45 minutes

At the School of Modern Art originality is the most valued attribute. The students regularly
take originality exams. The exams are conducted by seating the students in a classroom
arranged in n columns and m rows. The students are then told to write an original integer on
a piece of paper. When collecting the results the teacher noticed that sometimes the students
that sat next to each other return integers that are close in value and thus unoriginal.

Task to solve

B.15. [5 points]

Write a function detect_cheaters that will receive exam answers as a list of m rows of n

columns and determine the number of students suspected of cheating. The teacher considers
a pair of students that sit close to each other to be cheating if their answers differ by less
than t in absolute value. You should assume that a student can only plagiarise the results
from students sitting in front and behind him in the same column or to the left and to the
right of him in the same row.

Example 1

Input:

exam_results =[[1, 10], [2, 15]]

detect_cheaters(exam_results , 3)

Output:

2

Example 2

Input:

exam_results =[[1, 4, 7], [3, 6, 7], [23, 12, 5]]

detect_cheaters(exam_results , 3)

Output:

7

Example 3

Input:

exam_results =[[1, 4, 5, 26, 34], [53, 4, 2, 3, 5], [63, 2, 35, 4, 33]]

detect_cheaters(exam_results , 3)

Output:

Page 16

8

Page 17

Text wrapping

Estimated time required: 45 minutes

Text wrapping is breaking a section of text into lines so that it will fit into the available
width of a page, window or other display area. In text display this is achieved by continuing
on a new line when a line is full, so that each line fits into the viewable window, allowing
text to be read from top to bottom without any horizontal scrolling.

Task to solve

B.16. [5 points]

We are given a string that we want to display in a window that can display w characters per
line. When displaying the text in the window we can break the line only on spaces that are
in front of a new word. The space character is displayed as a part of the previous line and
can extend past the edge of the window. A new line always begins with a character that is
not a space.

Write a function wrap_text(display_text, w_max) that will calculate for each window width
from 1 to w_max the number of lines required to display the text. The text is passed to the
function as a string display_text. You can assume that it only contains alphanumeric char-
acters, separators and space characters. The text will not contain any newline or tabulator
characters and will never start with a space. The function should return a list of length
w_max that gives for each width between 1 and w_max the number of lines required to display
the string. If it is not possible to display the text for certain display window width place the
value of -1 in corresponding position in the list.

Example 1

Input:

text="Every novel is a mystery novel if you never finish it."

n_lines=wrap_text(text , 20)

print(n_lines)

Output:

[-1, -1, -1, -1, -1, -1, 9, 9, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3]

Example 2

Input:

text="Many were increasingly of the opinion that they had all made a big

mistake in coming down from the trees in the first place. And some

suggested that even the trees had been a bad move , and that no one

should ever have left the oceans."

n_lines=wrap_text(text , 20)

print(n_lines)

Page 18

Output:

[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 22, 21, 18, 17, 15, 15, 15,

14, 13]

Appendix

Excerpt from documentation for module random:

choice(self , seq) method of Random instance

Choose a random element from a non -empty sequence.

gauss(self , mu , sigma) method of Random instance

Gaussian distribution.

mu is the mean , and sigma is the standard deviation. This is

slightly faster than the normalvariate () function.

Not thread -safe without a lock around calls.

randint(self , a, b) method of Random instance

Return random integer in range [a, b], including both end points.

random (...)

random () -> x in the interval [0, 1).

randrange(self , start , stop=None , step=1, _int=<type ’int ’>, _maxwidth

=9007199254740992L) method of Random instance

Choose a random item from range(start , stop[, step]).

This fixes the problem with randint () which includes the

endpoint; in Python this is usually not what you want.

sample(self , population , k) method of Random instance

Chooses k unique random elements from a population sequence.

Returns a new list containing elements from the population while

leaving the original population unchanged. The resulting list is

in selection order so that all sub -slices will also be valid random

samples. This allows raffle winners (the sample) to be partitioned

into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the

population contains repeats , then each occurrence is a possible

selection in the sample.

To choose a sample in a range of integers , use xrange as an argument.

This is especially fast and space efficient for sampling from a

large population: sample(xrange (10000000) , 60).

shuffle(x)

Page 19

Shuffle the sequence x in place.

Excerpt from the Python documentation for some the methods of list objects:

append(x)

Add an item to the end of the list.

extend(iterable)

Extend the list by appending all the items from the iterable.

insert(i, x)

Insert an item at a given position. The first argument is the index of

the element before which to insert.

remove(x)

Remove the first item from the list whose value is equal to x. It

raises a ValueError if there is no such item.

pop([i])

Remove the item at the given position in the list , and return it. If

no index is specified , a.pop() removes and returns the last item in the

list. (The square brackets around the i in the method signature denote

that the parameter is optional , not that you should type square

brackets at that position. You will see this notation frequently in the

Python Library Reference .)

clear()

Remove all items from the list.

index(x[, start[, end]])

Return zero -based index in the list of the first item whose value is

equal to x. Raises a ValueError if there is no such item.

The optional arguments start and end are interpreted as in the slice

notation and are used to limit the search to a particular subsequence

of the list. The returned index is computed relative to the beginning

of the full sequence rather than the start argument.

sort(*, key=None , reverse=False)

Sort the items of the list in place (the arguments can be used for

sort customization).

reverse ()

Reverse the elements of the list in place.

Page 20

