
Solutions to the retake exam in Programming
in Python (1TD327) - 2022-06-10, 5 ECTS

2022-06-10

Grading criteria

Part A consisted of 10 multiple choice questions. Each correct answer was
worth 1 point, giving 10 points in total. Part B consisted of 15 tasks, one of
which was a bonus task. Value of each correct answer is listed next to each
task in the exam. In total, there were 32 points available and the bonus task
was worth 4 points.

• Grade 3: 8 or more points on Part A

• Grade 4: 8 or more points on Part A and between 19 and 32 points on
Part B

• Grade 5: 9 or more points on Part A and 32.5 points or more on Part
B

1

Solutions to Part A

Question Answer
1 A
2 B
3 C
4 B
5 C
6 B
7 C
8 D
9 B
10 B

Grading system: 1 point per correct answer, 0 if the answer is wrong, missing,
or several options were circled.

Solutions to Part B

Simulation of a Simple War card game

Note: The solutions presented here are only suggestions, there are other
implementations that are acceptable.

If you have any questions about the solutions presented or the grading,
please contact the teachers.

Listing 1: Initialization

import random

suits = [’Hearts ’,’Clubs ’,’Spades ’,’Diamonds ’]

points = {’Two’: 2, ’Three’: 3, ’Four’: 4, ’Five’: 5, ’Six’ :

6,

’Seven’ :7, ’Eight’: 8,’Nine’:9, ’Ten’:10,

’Jack’:11, ’Queen’: 12,’King’: 13,’Ace’:14}

Listing 2: Card class

2

class Card():

"""

Models a playing card.

"""

def __init__(self , suit , rank):

self.suit = suit

self.rank = rank

self.pts = points[rank]

def wins(self , adversary_card):

if self.pts > adversary_card.pts:

return 1

elif self.pts == adversary_card.pts:

return 0

else:

return -1

def __str__(self):

return self.rank + ’ of ’ + self.suit

Listing 3: Card instance example

mycard = Card(’Clubs’, ’Ace’)

print(f’My card is {mycard} and is worth {mycard.pts} points.

’)

Output:

My card is Ace of Clubs and is worth 14 points.

Listing 4: Deck class

class Deck():

"""

Models a deck of playing cards.

"""

def __init__(self):

self.set_of_cards = []

3

def nb_of_cards(self):

return len(self.set_of_cards)

def add_cards(self , new_cards):

for acard in new_cards:

self.set_of_cards.insert(0, acard)

def shuffle_cards(self):

random.shuffle(self.set_of_cards)

def pick_top_card(self):

if len(self.set_of_cards) > 0:

card_to_pick = self.set_of_cards.pop()

else:

card_to_pick = None

return card_to_pick

def empty_deck(self):

self.set_of_cards = []

def __str__(self):

return ’(bottom) ’ + ’, ’.join([card.__str__ () for card

in self.set_of_cards]) + ’ (top)’

Listing 5: Deck instance example

a_deck = Deck()

a_deck.add_cards ([mycard , Card(’Spades ’, ’King’), Card(’Clubs

’, ’Queen’), Card(’Hearts ’, ’Three’)])

print(f’There are {a_deck.nb_of_cards ()} cards in the deck.’)

print(’\nThe cards are: ’, a_deck)

print(’\nThe top card is: ’, a_deck.set_of_cards [-1])

print(’\nShuffling the cards!’)

a_deck.shuffle_cards ()

print(’\nPicking the top card: ’, a_deck.pick_top_card ())

print(f’\nNow , there are {a_deck.nb_of_cards ()} cards left in

the deck.’)

4

Output:

There are 4 cards in the deck.

The cards are: (bottom) Three of Hearts , Queen of Clubs ,

King of Spades , Six of Clubs (top)

The top card is: Six of Clubs

Shuffling the cards!

Picking the top card: Three of Hearts

Now , there are 3 cards left in the deck.

Listing 6: SimpleWar class

class SimpleWar ():

"""

Methods for simulating a simple war card game.

"""

def __init__(self , name1 , name2):

Create players

self.player1 = {’name’: name1 , ’deck’: Deck()}

self.player2 = {’name’: name2 , ’deck’: Deck()}

Create main deck of cards with all 52 cards

self.main_deck = Deck()

for s in suits:

for p in list(points.keys())[:3]:

new_card = Card(s, p)

self.main_deck.add_cards ([new_card])

self.main_deck.shuffle_cards ()

print(self.main_deck)

def deal_cards(self):

half = self.main_deck.nb_of_cards () // 2

cards1 = self.main_deck.set_of_cards [:half]

cards2 = self.main_deck.set_of_cards[half:]

self.main_deck.set_of_cards = []

5

self.player1[’deck’]. add_cards(cards1)

self.player2[’deck’]. add_cards(cards2)

def play_turn(self):

card1 = self.player1[’deck’]. pick_top_card ()

card2 = self.player2[’deck’]. pick_top_card ()

self.main_deck.add_cards ([card1 , card2])

print()

print(’Card 1: ’, card1)

print(’Card 2: ’, card2)

print(self.main_deck)

if card1 is None or card2 is None:

print(’\nGame over!’)

else:

if card1.wins(card2) == 1:

self.player1[’deck’]. add_cards(self.main_deck.

set_of_cards)

self.main_deck.empty_deck ()

print(f"{self.player1[’name ’]} wins the turn")

elif card1.wins(card2) == -1:

self.player2[’deck’]. add_cards(self.main_deck.

set_of_cards)

self.main_deck.empty_deck ()

print(f"{self.player2[’name ’]} wins the turn")

else:

print(’War!’)

return self.player1[’deck’]. nb_of_cards (), self.player2[’

deck’]. nb_of_cards ()

def winner(self):

if self.player1[’deck’]. nb_of_cards () > self.player2[’

deck’]. nb_of_cards ():

return self.player1

else:

return self.player2

Listing 7: SimpleWar game example

game = SimpleWar(’Piff’, ’Puff’)

print(game.player1)

6

print(game.player2)

game.deal_cards ()

print(game.player1[’deck’])

print(game.player2[’deck’])

n1, n2 = game.player1[’deck’]. nb_of_cards (), game.player2[’

deck’]. nb_of_cards ()

max_n_turns = 100

turn_n = 0

while (n1 != 0 and n2 != 0) and turn_n < max_n_turns:

n1, n2 = game.play_turn ()

turn_n += 1

print(f"\nAnd the winner is... {game.winner ()[’name ’]}!")

Output

{’name’: ’Piff’, ’deck’: <__main__.Deck object at 0

x7f6c11642e50 >}

{’name’: ’Puff’, ’deck’: <__main__.Deck object at 0

x7f6c11642850 >}

(bottom) Two of Clubs , Two of Diamonds , Four of Diamonds ,

Four of Clubs , Two of Spades , Two of Hearts (top)

(bottom) Three of Diamonds , Four of Hearts , Three of Clubs ,

Four of Spades , Three of Spades , Three of Hearts (top)

...

Card 1: Three of Hearts

Card 2: Three of Diamonds

(bottom) Three of Diamonds , Three of Hearts (top)

War!

Card 1: Three of Clubs

Card 2: Two of Clubs

(bottom) Two of Clubs , Three of Clubs , Three of Diamonds ,

Three of Hearts (top)

Piff wins the turn

Card 1: Three of Spades

Card 2: Four of Hearts

(bottom) Four of Hearts , Three of Spades (top)

Puff wins the turn

7

Card 1: Four of Spades

Card 2: Two of Hearts

(bottom) Two of Hearts , Four of Spades (top)

Piff wins the turn

Card 1: Two of Spades

Card 2: Four of Hearts

(bottom) Four of Hearts , Two of Spades (top)

Puff wins the turn

...

And the winner is ... Piff!

Plagiarism detection at an art school

B.15. [5 points]

Several solutions were possible for the task. A solution that scored all possible
points needed to have the following features:

• Correctly handles the list of lists input.

• Correctly handles boundaries.

• Correctly counts the cheaters.

• No major misuse of Python data structures and functions.

Listing 8: Conversion between liters and medieval measurement system.

#Implementation with Python lists.

def detect_cheaters(table , t):

nrows=len(table)

ncolumns=len(table [0])

neighs=[-1, 1] #Neighbours to check

#Record which students are cheaters

cheaters =[[False for _ in range(0, ncolumns)] for _ in

range(0, nrows)]

#Go over rows and columns

for i in range(0, nrows):

for j in range(0, ncolumns):

8

for rn in neighs:

ic=i

jc=j+rn

if(0<=jc and jc <ncolumns):

if(abs(table[i][j] - table[i][jc])<t):

#Mark both students as cheaters

cheaters[i][j]=True

cheaters[i][jc]=True

ic=i+rn

jc=j

if(0<=ic and ic <nrows):

if(abs(table[i][j] - table[ic][j])<t):

#Mark both students as cheaters

cheaters[i][j]=True

cheaters[ic][j]=True

#Now count the number of cheaters

count=0

for i in range(0, nrows):

for j in range(0, ncolumns):

if(cheaters[i][j]):

count=count +1

return count

Text wrapping

B.16. [5 points]

Several solutions were possible for the task. A solution that scored all possible
points needed to have the following features:

• It correctly handles the cases when the sentence cannot be printed.

• It correctly handles the extra space character at the end of a line.

• It correctly determines the number of lines needed.

• No major misuse of Python data structures and functions.

Listing 9: One pass solution for alliteration problem.

def wrap_text(text , W):

9

n_lines =[-1]*W

words=text.split ()

#Precalculate the word lengths to avoid recalculating

over and over again in the for loop

w_lens =[len(word) for word in words]

N_words=len(words)

max_len=max(w_lens)

#Run the calculation from the smallest viable width on

for w in range(max_len , W+1):

pos=0

n_lines_w =0

curr_w =0

while pos < N_words:

#We can only add the word to the current line if

the line will still fit

#in the display window after we add the word.

if(curr_w+w_lens[pos]+1 <= w+1):

#The word fits.

curr_w=curr_w+w_lens[pos]+1

pos=pos+1

else:

#The word does not fit , add a new line and

attempt to add the word again

n_lines_w=n_lines_w +1

curr_w =0

#Count the final line we have been working on when we

run out of words

n_lines[w-1]= n_lines_w +1

return n_lines

10

