
Division of Computing Science
Department of Information Technology
Uppsala University

Exam in Programming in Python (1TD327), 5 ECTS

• Note: Answers should be written in English. All problems must be solved using Python
code. Use short, appropriate and descriptive names for all your variables and functions.
Note that your grade will be affected negatively if:

– your code is unclear and/or hard to read

– identical snippets of code are repeated several times (copy/paste)

– common data structures (lists, dictionaries, strings) are not used correctly

• Tools : Any electronic devices or any other formula books are not allowed!

• Date: January 7, 2022, 8:00 – 13:00.

• Place: Polackbackens skrivsal.

• The grading system:

– The exam has two parts: (A1.-A10.) Basic and (B1.-B15.) Advanced.

– In order to Pass, you need to get at least 75% of the points from Part (A).

– If Part (A) is failed, part (B) will not be graded.

– To get Grade 4, you need to pass part (A) and get at least 50% of the points
from part (B).

– To get Grade 5, you need to get at least 85% of the points both from part (A)
and (B).

Part A

Estimated time required: 1 hour

Each correct answer is worth 1 point.

1. After the following code executes, how does the programmer compute a square root of
2?
Code:

import numpy

Select one alternative:

A. np.sqrt(2)

B. sqrt(2)

C. numpy.sqrt(2)

D. sqrt(2).numpy

2. What is the data type of the variable ’months’?
Code:

months = [i for i in range (1,13)]

Select one alternative:

A. list

B. double

C. string

D. integer

3. See the code below. After the code is executed, the program prints [4, 2, 3] and 1. Why
does the value of countList get overwritten by a function and the value of countInteger
does not?
Code:

countList = [1, 2, 3]

def someFunction1 ():

countList [0] = 4

someFunction1 ()

print(countList)

def someFunction2 ():

countInteger = 0

countInteger = 1

someFunction2 ()

print(countInteger)

Page 2

Select one alternative:

A. This is because countInteger is an integer which is a mutable type, but countList
is a list which is an immutable type.

B. This happens because Python is an object-oriented programming language.

C. This happens because someFunction2 is defined before countInteger is set to 1,
while someFunction1 is defined after countList is set to [1, 2, 3].

D. This is because countInteger is an integer which is an immutable type, but
countList is a list which is a mutable type.

4. Which parts of the program below are referred to as the global scope, and which is
referred to as the local scope?
Code:

Part 1 start

someList = [2*i+1 for i in range (1,6)]

someList [4]=0

#Part 1 stop #

def someFunction(inp):

Part 2 start

cvar = 3

inp[0] = 22* cvar

return cvar + inp [3]

Part 2 stop

Part 3 start

out = someFunction(someList)

print(out)

Part 3 stop

Select one alternative:

A. Part 1 and Part 3 together are the global scope, Part 2 is the local scope.

B. Part 2 and Part 3 together are the global scope, Part 1 is the local scope.

C. Part 1 and Part 2 and Part 3 together are the local scope, there is no global
scope.

D. Part 1 and Part 2 together are the global scope, Part 3 is the local scope.

5. Which of the codes below does correctly compute an approximation to π2/6 with the
Euler method, by using the list comprehension?
Select one alternative:

A.
res = 1

for k in range(1,N+1):

res = res + 1/k**2

B.
res = sum ([1/k**2 for k in range(1,N+1)])

Page 3

C.
listt = [0] * (N+1)

for k in range(1, N+1):

listt[k] = 1/k**2

res = sum(listt)

6. What is the main purpose of defining classes when programming? Select one alternative:

A. Classes compress the input data.

B. Classes give a better input/output experience when reading images.

C. Classes speed up the code.

D. Classes provide a generalization of parts of code and contribute to the code
clarity and reusability.

7. Consider a class defined below. How do we retrieve the output of the method __str__?
Code:

class Breakfast:

def __init__(self , crunch , liquid):

self.crunch = crunch

self.liquid = liquid

def __str__(self):

return ’crunch=’ + self.crunch + ’, liquid=’ + self.liquid

Select one alternative:

A. print(Breakfast(’Cornflakes’, ’Milk’).str)

B. print(Breakfast(’Cornflakes’, ’Milk’).__str__)

C. print(Breakfast(’Cornflakes’, ’Milk’))

D. print(Breakfast)

8. When do we use a dictionary as the data structure in Python?
Select one alternative:

A. When the data values have a prescribed order.

B. When we want to allow the data values to have duplicate entries.

C. When we wish to associate the data values with keys and, where each key
allows for an association with several data values.

D. When we wish to associate the data values with keys, where each key allows
for an association with one data value.

9. Given a predefined list myList, what does myList[-1] return? Select one alternative:

A. It returns all the elements in the list, except the second one.

B. It returns all the elements in the list, except the last one.

Page 4

C. It returns an error, the syntax is invalid.

D. It returns the last element of that list.

10. Which is the output of the code snippet below?

aList = ["Uppsala", [2, 4, 8, 16]]

print(aList [0][3:])

print(aList [1][3])

A. ’U’, ’sala’ and 2, 16

B. ’sala’ and 16

C. ’U’, ’sala’ and 4, 16

D. IndexError

Part B

Qwixx Dice Game Simulation

Estimated time required: 2 hours 30 minutes

For this part, you are expected to model a simplified version of the ”Qwixx” dice game.
The tasks for you to complete are to implement Python classes for representing various kinds
of objects that are needed in a Qwixx game, and a script for simulating playing a turn.
Make sure to remove the pass and the ... instructions in the code when you implement
the different tasks.

Description of the rules for playing Qwixx

Qwixx is usually played by 2-5 players who roll in turn 6 dice for scoring points. Each player
has a score sheet with:

• The numbers from 2 to 12 in rows of color red (r) and yellow (y),

• The numbers from 12 to 2 in rows of color green (g) and blue (b).

An illustration of a real Qwixx score sheet is shown on Figure 1.
In order to win the game, each player wants to mark off as many numbers as possible,

but you can mark off a number only if it is to the right of all off-marked numbers in the
same row. For example on Figure 1:

• In the red row, all numbers ranging from 6 to 12 that can be marked off since they
are on the right to the number 5 which is marked off. The numbers 2, 3, 4 cannot be
marked off any longer.

Page 5

• In the blue row, all numbers ranging from 6 to 2 that can be marked off since they are
on the right to the number 7 which is the rightmost number that is marked off. The
numbers 12, 11, 10, 8 cannot be marked off any longer.

The more marks a player makes in a row, the higher its score for that row.

A turn is played as follows:

1. The active player rolls six dice: 2 white (w1, w2) and 1 of each of the 4 colors listed
above (r, y, g, b). Then the active player marks off the sum of one colored die and
one white die in the row that has the same color as the die. For example, if the dice
were rolled as on the Figure 1 (w1 = 6, w2 = 5, r = 2, y = 6, g = 1, b = 1), the active
player can mark either w1 + y = 12 or w2 + y = 11 in the yellow row, or w1 + b = 7 or
w2 + b = 6 in the blue row, etc.

2. Each nonactive player marks off the sum of the 2 white dice on one of their four rows,
that is to say w1 + w2 = 11 either in the red, yellow, green, or blue row.

The score of a player, or number of points, is calculated as the sum of all off-marked
numbers. Once all players are done, the turn ends. The player sitting next to the current
active player becomes the active player for the next turn. Turns are played until at least one
player has a score of 50 points.

Description of the Python classes and objects used for modelling Qwixx

Three classes are used in the game modelling:

• The Dice class (code listing 1) that is used for modelling each of the 6 dice used in
the game (2 white dice and 4 colored ones). The constructor of the class takes 2 input
parameters that are:

– sides: (integer, defaut value = 6), number of faces of the die,

– color: (string, defaut value = ’white’), color of the die.

• The ColorRow class (code listing 3) that models a colored scoring line on a score sheet,
constructed from the following input parameters:

– color: (string) color of the row,

– sort desc: (boolean) indicates whether the numbers in the row should be sorted
in descending order or in ascending one.

• The Player class (code listing 5) that models a player by its name and its score sheet.
The constructor takes 1 input parameter:

– name: (string) name of the player.

Page 6

Figure 1: Example of a score sheet of a player in a Qwixx game

Tasks to solve

B.1. [1 point]

Implement the constructor of the Dice class:

• Define an attribute sides: integer which has the value 6.

• Define an attribute color from the input parameter color.

• Define an attribute face: integer that shows one random face.

B.2. [2 points]

Implement the str (self) method of the Dice class, based on the output example in the
code listing 2.

B.3. [2 points]

Implement roll(self) method of the Dice class, based on the output example in the code
listing 2. This method assigns a new random value to the face attribute.

B.4. [1 point]

Implement the constructor of the ColorRow class:

• Define an attribute color from the color input argument.

Page 7

• Define an attribute sort desc that is assigned to the sort desc input argument.

• Define an attribute numbers: a list of numbers ordered as shown on Figure 1.

• Define an attribute offmarks: a list for the numbers marked in each row (nothing is
marked off at the beginning of the game).

B.5. [2 points]

Implement markable(self) method of the ColorRow class, based on the output example in
the code listing 4 and the if statement already written. This method calculates and returns
the list of numbers that can be marked off, that is to say, the numbers that are to the right
of the maximum or minimum number crossed in the row.

B.6. [2 points]

Implement the mark(self, num) method of the ColorRow class, based on the output ex-
ample in the code listing 4. This method places the marked number num in the offmarks

attribute.

B.7. [2 points]

Implement points(self) method of the ColorRow class, based on the output example in
the code listing 4. This method returns the score for the color row as the sum of the numbers
that are marked off in this row.

B.8. [1 point]

Implement the constructor of the Player class, based on the output example in the code
listing 6.

• Define an attribute name from the name input parameter.

• Define an attribute rows as a dictionary in which the keys are the colors ’green’,
’red’, ’blue’, ’yellow’, and the values are instances of the ColorRow class with the
corresponding color. The numbers in the row must be sorted as on Figure 1 for each
color.

B.9. [2 points]

Implement the rolls(self, dicedict) method of the Player class, based on the output
example in the code listing 10. This method should roll all the dice in the dictionary dicedict.

Page 8

B.10. [2 points]

Implement the method plays(self, val, hue) of the Player class, based on the output
example in the code listing 10. This method returns True if the player can mark off the
number val in the row having the color hue, else False if the player cannot mark off any
number.

B.11. [2 points]

Implement the tot points(self) method of the Player class, based on the output example
in the code listing 10. This method returns the number of points of the player as the sum
of the scores of all color rows.

B.12. [3 points]

Create dice and players for simulating a turn by completing the code listing 8: define a set of
6 dice accordingly to the Qwixx description, as well as a list of 3 players with names ”Rock”,
”Paper”, and ”Scissors”.

B.13. Bonus task! [4 points]

Simulate a game with the objects instantiated in the previous task. You can assume that
all classes and functions are written and saved together in the same file. Complete the code
listing 9: play turns until one of the players has a score of at least 50 points. You are allowed
to directly use the function play turn(...) (code listing 7) if you want. Display how many
turns were played when the game ends.

Listing 1: Dice class

import random

class Dice():

""" Represents a colored 6-face die """

def __init__(self , color=’white’):

B.1.

pass

def __str__(self):

B.2.

pass

def roll(self):

B.3.

pass

Listing 2: Dice instance example

Page 9

green_die = Dice(color=’green ’)

print(’Die: ’, green_die)

print(’Rolling the die...’)

green_die.roll()

print(’Die: ’, green_die)

Output:

Die: color: green , value: 2

Rolling the die ...

Die: color: green , value: 6

Listing 3: ColorRow class

class ColorRow ():

""" Represents a colored row with numbers in (2, 12) """

def __init__(self , color , sort_desc=False):

B.4

pass

def markable(self):

B.5

if self.sort_desc and self.offmarks != []: # 12 comes first , only

smallest values are playable

most_right = min(self.offmarks) - 1

num_set = [n for n in range(2, most_right + 1)]

...

return sorted(num_set , reverse=self.sort_desc)

def mark(self , num):

B.6

pass

def points(self):

B.7

pass

def __str__(self):

line = [str(i) if i not in self.offmarks else ’X’ for i in self.

numbers]

return f’{self.color} row: \t{line} \t Score = {self.points ()}’

Listing 4: ColorRow instance example

red_row = ColorRow(’red’, sort_desc=False)

Page 10

print(red_row)

print(’Offmarks: ’, red_row.offmarks)

print(’Free numbers: ’, red_row.markable ())

print()

red_row.mark (5)

print(red_row)

print(’Offmarks: ’, red_row.offmarks)

print(’Free numbers: ’, red_row.markable ())

Output:

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

Offmarks: []

Free numbers: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

red row: [’2’, ’3’, ’4’, ’X’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 5

Offmarks: [5]

Free numbers: [6, 7, 8, 9, 10, 11, 12]

Listing 5: Player class

class Player ():

""" Represents a Qwixx player """

def __init__(self , name):

B.8.

pass

def __str__(self):

return f’’’\nPlayer "{self.name }": \r

{self.tot_points ()} points \r

\rColor rows: \r

{str(self.rows[’green ’])}\r

{str(self.rows[’red ’])}\r

{str(self.rows[’blue ’])}\r

{str(self.rows[’yellow ’])}\r

’’’

def rolls(self , dicedict):

B.9

pass

def plays(self , val , hue):

B.10

pass

def tot_points(self):

B.11

Page 11

pass

Listing 6: Player instance example

p = Player(’Bob’)

print(p)

Output:

Player "Bob":

0 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

Listing 7: Function for playing a turn

def play_turn(dice , idx_active , list_players):

"""

Simulate playing a turn of Qwixx.

Random naive strategy (without looking at the colored rows and without

passing unless no mark possible)

"""

Active player starts

for p in list_players:

if list_players.index(p) == idx_active:

print(f’\nActive player "{p.name}" plays ’)

Active player rolls the all dice

p.rolls(dice)

print(’Dice:’)

for d in dice:

print(d, ’ ’, dice[d].face)

Active player picks 1 color + 1 white dice and marks off

colpick = random.choices ([’green’, ’red’, ’yellow ’, ’blue’])[0]

whipick = random.choices ([’white1 ’, ’white2 ’])[0]

hit = p.plays(dice[whipick].face + dice[colpick].face , colpick) #

sum of 2 dice is played on the same row

print(p)

Other players:

Page 12

for p in list_players:

if list_players.index(p) != idx_active:

print(f’\nPlayer "{p.name}" plays ’)

pick_dice = [’white1 ’, ’white2 ’]

colpick = random.choices ([’green’, ’red’, ’yellow ’, ’blue’])[0]

hit = p.plays(dice[’white1 ’].face + dice[’white2 ’].face , colpick) #

sum of 2 dice is played on the same row

print(p)

print(’\nEnd of turn’.ljust (80, ’.’))

next_player = (idx_active + 1) % len(list_players)

return next_player

Listing 8: Script for creating players and a set of dice

B.12

dice_set = ...

test_players = ...

active_player = 0

Listing 9: Game script

scores = [p.tot_points () for p in test_players]

B.13

print(f’\n\nGame over! {k} turns were played.’)

Listing 10: Playing turn example

Turn 1

Active player "Rock" plays

Dice:

white1 3

white2 5

green 4

red 4

yellow 2

blue 1

Page 13

Player "Rock":

7 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’X’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 7

Player "Paper" plays

Player "Paper":

8 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 8

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

Player "Scissors" plays

Player "Scissors":

8 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 8

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

End of turn

..

Turn 2

Active player "Paper" plays

Dice:

Page 14

white1 6

white2 4

green 1

red 2

yellow 3

blue 2

Player "Paper":

13 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’7’, ’6’, ’X’, ’4’, ’3’, ’2’]

Score = 13

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

Player "Rock" plays

Player "Rock":

17 points

Color rows:

green row: [’12’, ’11’, ’X’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 10

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’X’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 7

Player "Scissors" plays

Player "Scissors":

8 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 8

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 0

End of turn

..

Page 15

...

Turn 13

Active player "Rock" plays

Dice:

white1 2

white2 6

green 2

red 6

yellow 4

blue 3

Player "Rock":

37 points

Color rows:

green row: [’12’, ’11’, ’X’, ’9’, ’8’, ’7’, ’X’, ’5’, ’4’, ’3’, ’2’]

Score = 16

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’X’, ’9’, ’10’, ’11’, ’12’]

Score = 8

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’X’, ’5’, ’4’, ’3’, ’2’]

Score = 6

yellow row: [’2’, ’3’, ’4’, ’5’, ’6’, ’X’, ’8’, ’9’, ’10’, ’11’, ’12’]

Score = 7

Player "Paper" plays

Player "Paper":

50 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’7’, ’6’, ’X’, ’4’, ’3’, ’2’]

Score = 13

red row: [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’X’, ’9’, ’10’, ’11’, ’12’]

Score = 8

blue row: [’X’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 12

yellow row: [’2’, ’3’, ’4’, ’5’, ’X’, ’7’, ’8’, ’9’, ’10’, ’X’, ’12’]

Score = 17

Player "Scissors" plays

Player "Scissors":

43 points

Color rows:

green row: [’12’, ’11’, ’10’, ’9’, ’X’, ’X’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 15

Page 16

red row: [’2’, ’3’, ’4’, ’X’, ’6’, ’7’, ’8’, ’9’, ’10’, ’X’, ’12’]

Score = 16

blue row: [’12’, ’11’, ’10’, ’9’, ’8’, ’7’, ’6’, ’5’, ’4’, ’3’, ’2’]

Score = 0

yellow row: [’2’, ’3’, ’X’, ’5’, ’6’, ’7’, ’X’, ’9’, ’10’, ’11’, ’12’]

Score = 12

End of turn

..

Game over! 13 turns were played.

Page 17

Medieval volume measurement system

Estimated time required: 45 minutes

In 13th century England the following unit system was in place to measure the volume of
liquids:

1 gallon = 2 pottles
1 pottle = 2 quarts
1 quart = 2 pints
1 pint = 2 chopins
1 chopin = 2 gills

Task to solve

B.14. [5 points]

Knowing that 1 gallon equals 4.546 liters, write a function convert_liters_to_UK that takes
the amount given in liters as a floating point value and finds its equivalent in medieval units.

When converting, you need to keep in mind the fact that the amounts in liters specified by
floating point numbers have finer granularity than the amounts expressible by the medieval
system. As an example we can take 4.547 l, which is equivalent to 1 gallon + 1 mL and
therefore cannot be expressed directly with medieval units. The equivalent volume would
then be 1 gallon + 1 gill, that is: the smallest volume expressible with medieval units that
is large enough to contain the volume given in liters.

The output of your function should be text printed to the terminal as illustrated below.

Example 1

Input:

convert_liters_to_UK (4.547)

Output:

4.547l fits into:

1 gallon

1 gill

Example 2

Input:

convert_liters_to_UK (1)

Output:

1l fits into:

1 quart

Page 18

Example 3

Input:

convert_liters_to_UK (90)

Output:

90l fits into:

19 gallons

1 pottle

1 quart

1 chopin

Page 19

Alliterations

Estimated time required: 45 minutes

Alliteration is a repetition of identical initial letter within a group of consecutive words in a
sentence. Examples of alliterations are:

• humble house

• rocky road

• potential power play

• Peter Piper

The following examples are not alliterations:

• Water is wet. White is a color.

• cheap and chippy

Task to solve

B.15. [5 points]

Write a function that will determine the number of alliterations in a sentence and determine
the number of words in the longest single alliteration. The function should be defined as
follows:

def analyze_alliterations(sentence):

Function body

return n_alliterations , longest_alliteration

The input and output parameters are defined as follows:

• sentence: input string containing the sentence to be analyzed. You can assume that
punctuation marks have been stripped from the sentence.

• n_alliterations: number of alliterations in the sentence

• longest_alliterations: the length of the longest alliteration

Example 1

Input:

sent1="From a cheap and chippy chopper on a big black block"

print(analyze_alliterations(sent1))

Output:

(2, 3)

Page 20

Example 2

Input:

sent2="To sit in solemn silence in a dull dark dock in a pestilential

prison with a lifelong lock awaiting the sensation of a short sharp

shock"

print(analyze_alliterations(sent2))

Output:

(5, 3)

Appendix

Excerpt from documentation for module random:

choice(self , seq) method of Random instance

Choose a random element from a non -empty sequence.

gauss(self , mu , sigma) method of Random instance

Gaussian distribution.

mu is the mean , and sigma is the standard deviation. This is

slightly faster than the normalvariate () function.

Not thread -safe without a lock around calls.

randint(self , a, b) method of Random instance

Return random integer in range [a, b], including both end points.

random (...)

random () -> x in the interval [0, 1).

randrange(self , start , stop=None , step=1, _int=<type ’int ’>, _maxwidth

=9007199254740992L) method of Random instance

Choose a random item from range(start , stop[, step]).

This fixes the problem with randint () which includes the

endpoint; in Python this is usually not what you want.

sample(self , population , k) method of Random instance

Chooses k unique random elements from a population sequence.

Returns a new list containing elements from the population while

leaving the original population unchanged. The resulting list is

in selection order so that all sub -slices will also be valid random

samples. This allows raffle winners (the sample) to be partitioned

into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the

population contains repeats , then each occurrence is a possible

Page 21

selection in the sample.

To choose a sample in a range of integers , use xrange as an argument.

This is especially fast and space efficient for sampling from a

large population: sample(xrange (10000000) , 60)

index(self , element) inbuilt list -method in Python

Searches for a given element from the start of the list and returns

the lowest index where the element appears.

Page 22

