Solutions to the exam in Programming in
Python (1TD327) - 2022-01-07, 5 ECTS

2022-01-07

Grading criteria

Part A consisted of 10 multiple choice questions. Each correct answer was
worth 1 point, giving 10 points in total. Part B consisted of 15 tasks, one of
which was a bonus task. Value of each correct answer is listed next to each
task in the exam. In total, there were 32 points available and the bonus task
was worth 4 points.

e Grade 3: 8 or more points on Part A

e Grade 4: 8 or more points on Part A and between 16 and 27 points on
Part B

e Grade 5: 9 or more points on Part A and 27.5 points or more on Part

B

Solutions to Part A

Question | Answer
1 C
2 A
3 D
4 A
5 B
6 D
7 C
8 D
9 D
10 B

Grading system: 1 point per correct answer, 0 if the answer is wrong, missing,
or several options were circled.

Solutions to Part B

Qwixx game

Note: The solutions presented here are only suggestions, there are other
implementations that are acceptable.

Grading criteria for the solutions to the tasks

B.1. [1 point]

Definition of the attribute sides: use an input parameter sides or fix the
attribute to 6 in the constructor. self represents a die object in the scope
of the class. The constructor does not have any return value.

B.2. [2 points]

The __str__(self) method must return a string. Output example in the
code listing 2.

B.3. [2 points]

The roll(self) method does not return any value. Output example in the
code listing 2.

B.4. [1 point]

The attribute numbers is a list of numbers (not strings) that are sorted
depending on the value sort_desc attribute as shown on Figure 1. the
function range(start, stop) must be used correctly i.e. it generates inte-
gers in [start, stop) (the last number is stop — 1) with an increment of 1 if
nothing else is specified. Preferably avoid using a for-construction for sort-
ing the numbers but rather use list-dedicated functions as sorted(...) or
reverse(...). Instantiating examples are given in the code listing 4. self
represents a color row object in the scope of the class. The constructor does
not have any return value.

B.5. [2 points]

The markable(self) method handles three cases, preferably by using the
syntax if-elif-else: if numbers have already been marked off and the color
row has descending order (12 to 2), only numbers smaller than the smallest
one marked off can be played. Else if numbers have already been marked off
and the color row has ascending order (2 to 12), only numbers larger than
the largest one marked off can be played. Otherwise, the list of numbers that
can be played is the one defined in the constructor.

B.6. [2 points]

The mark(self, num) method does not return anything. It does not replace
the marked number num with a ’X’ in the numbers attribute since the
method __str__() handles this. It is not necessary to check that the number
is not already in the offmarks list since the markable(self) method does
not allow for double-offmarking to happen. Checking is however a sensible
precaution for avoiding an incorrect calculation of the points and the score.

B.7. [2 points]

A syntax with a counter incremented in a for-loop is also possible, but prefer-
ably use the function sum(...).

B.8. [1 point]

The syntax for defining the attribute rows as a dictionary (not a list!) has
to be correct i.e. with pairs of keys and values). The numbers in the rows
must be sorted as on Figure 1 for each color. self represents a player object
in the scope of the class.

B.9. [2 points]

The rolls(self, dicedict) method must use correctly the dictionary-
specific methods keys (), values(), or items(), as well as it must use the
correct syntax for accessing keys and values in a dictionary. Output example
in the code listing 10: the keys of the dictionary dicedict are colors (string
format) and the values are instances of the Dice () class. This method prefer-
ably uses the rol1 () method defined for a die object and it does not return
anything.

B.10. [2 points]

Beyond using the if-else for returning True/False and the for-construction
correctly, the method plays(self, val, hue) must mark off the number
val in the row having the color hue as shown in the output example in the
code listing 10.

B.11. [2 points]

The tot_points(self) method must iterates over all color rows of the player
with a correct syntax for the usage of a dictionary, and preferably use the
points () method previously defined for a color row. Output example in the
code listing 10.

B.12. [3 points]

The syntax must be correct for defining a dictionary, defining a list, instan-
tiating a player object, and a die object. See code listing 8.

4

B.13. Bonus task! [4 points]

Use preferably a while-loop, the syntax has to be correct for it. That is, the
stopping condition is defined in a general way (avoid assuming there are only
three players for example) with a variable initialized before entering the loop
AND this variable is updated in the scope of the while-loop for avoiding an
infinite execution. See code listings 9 and 7.

Listing 1: Dice class

import random

class Dice():

""" Represent a colored 6-face die """

def __init__(self, color=’white’):
self.sides = 6
self.color = color
self.face = random.randint (1, self.sides)

def str__(self):

return f’color: {self.color}, value: {self.face}’

def roll(self):
self.face = random.randint (1, self.sides)

Listing 2: Dice instance example

green_die = Dice(color=’green’)
print(’Die: ’, green_die)

print (’Rolling the die...?’)
green_die.roll ()

print(’Die: ’, green_die)

Output:

Die: color: green, value: 2
Rolling the die...

Die: color: green, value: 6

Listing 3: ColorRow class

class ColorRow ():
""" Represents a colored row with numbers in (2, 12) """

def __init__(self, color, sort_desc=False):
self.color = color
self.sort_desc = sort_desc
self .numbers = sorted(range(2, 12 + 1), reverse=self.

sort_desc) # replace with O the marked off values and put
them into offmarks
self.offmarks = []

def markable(self):

if self.sort_desc and self.offmarks != []: # 12 comes
first, only smallest values are playable

most_right = min(self.offmarks) - 1

num_set = [n for n in range(2, most_right + 1)]
elif not self.sort_desc and self.offmarks != []: # 2
comes first, only largest values are playable

most_right = max(self.offmarks) + 1

num_set = [n for n in range(most_right, 12 + 1)]
else:

num_set = self.numbers

return sorted(num_set, reverse=self.sort_desc)

def mark(self, num):
self .offmarks.append (num)

def points(self):
return sum(self.offmarks)

def __str__(self):
line = [str(i) if i not in self.offmarks else ’X’ for i
in self.numbers]
return f’{self.color} row: \t{line} \t Score = {self.

points ()}’

Listing 4: ColorRow instance example

red_row = ColorRow(’red’, sort_desc=False)
print (red_row)

print (’0ffmarks: ’, red_row.offmarks)

print (’Free numbers: ’, red_row.markable())
print)

red_row.mark (5)

print (red_row)

print (’0Offmarks: ’, red_row.offmarks)
print (’Free numbers: ’, red_row.markable())
Output:

red TOW: [72)’)37’ 74),)57’ 76)’)77’ 783,)97’ 7107’
, 12°] Score

Offmarks: []

Free numbers: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

I
o

red row: [}2:’ 232, 240 X0, 067, T, 87, 297 2107,
, 2127] Score = 5

Offmarks: [5]

Free numbers: [6, 7, 8, 9, 10, 11, 12]

711)

Listing 5: Player class

class Player ():
""" Represents a (Qwixx player

nmnn

def __init__(self, name):

self .name = name

self .rows = {
’green’: ColorRow(’green’, sort_desc=True),
’red’: ColorRow(’red’, sort_desc=False),
>yellow’: ColorRow(’yellow’, sort_desc=False),
’blue’: ColorRow(’blue’, sort_desc=True)
}

def __str__(self):
return f’’’\nPlayer "{self.namel}": \r
{self.tot_points ()} points \r
\rColor rows: \r
{str(self.rows[’green’])}\r
{str(self.rows[’red’]) }\r
{str(self.rows[’blue’]) }\r
{str(self.rows[’yellow’]) }\r

))

def rolls(self, dicedict):
for d in dicedict:
dicedict[d].roll ()

def plays(self, wval, color):
playrow = self.rows[color]
if val in playrow.markable ():
playrow.mark (val)
return True
else: # cannot play
return False

def tot_points(self):
return sum([card.points() for card in self.rows.values()

D

Listing 6: Player instance example

p = Player(’Bob’)

print (p)
Output:
Player "Bob":
0 points
Color rows:
green row: [>12>, 2>11°>, 210°’, °9°, 282, >7’, ’6°, ’57, 24>
, 237, 2] Score = 0
red TOW: [727,)31’ J4), 757, 767, 77}, 787, 79), Jlo), J
112, 2127] Score = 0
blue row: [>12>, »11>, >10°, ’9°, 8>, ’7°, ’6°, ’5’, 4’
, 237, 2] Score = 0
yellow row: [>2>, °3’, 24>, °5> 26>, 277, 28, 79’ 10’

, 211, 2127] Score = 0

Listing 7: Function for playing a turn

def play_turn(dice, idx_active, list_players):

Simulate playing a turn of Qwixx.
Random naive strategy (without looking at the colored rows
and without passing unless no mark possible)
Active player starts
for p in list_players:
if list_players.index(p) == idx_active:
print (f’\nActive player "{p.namel}" plays’)
Active player rolls the all dice
p-rolls(dice)
print (’Dice:’)
for d in dice:
print(d, ’ °’, diceld].face)

Active player picks 1 color + 1 white dice and marks
off

colpick = random.choices([’green’, ’red’, ’yellow’, ’
blue’]1) [0]
whipick = random.choices([’whitel’, ’white2’]) [0]

hit = p.plays(dice[whipick].face + dicel[colpick].face,
colpick) # sum of 2 dice is played on the same row
print (p)

Other players:
for p in list_players:
if list_players.index(p) != idx_active:
print (f’\nPlayer "{p.namel}" plays’)
pick_dice = [’whitel’, ’white2’]
colpick = random.choices([’green’, ’red’, ’yellow’,
blue’]) [0]
hit = p.plays(dice[’whitel’].face + dice[’white2’].face
, colpick) # sum of 2 dice is played on the same row

)

print (p)
print (’\nEnd of turn’.ljust(80, ’.°))
next_player = (idx_active + 1) ¥ len(list_players)

return next_player

Listing 8: Script for creating players and a set of dice

Create dice set and players for simulating a turn

dice_set = {’whitel’: Dice(color=’white’), ’white2’: Dice(
color=’white’)}

dice_set.update(dict ([(c, Dice(color=c)) for c¢ in [’green’, °’
red’, ’yellow’, ’blue’]]))

Test turn
test_players = [Player(’Rock’), Player(’Paper’), Player(’
Scissors’)]

active_player = 0

Listing 9: Game script
scores = [p.tot_points() for p in test_players]
k=20

while max(scores) < 50:
print (£’\n\nTurn {k+1}\n’)

active_player = play_turn(dice_set, active_player,
test_players)

scores = [p.tot_points() for p in test_players]

k += 1

print (£ ’\n\nGame over! {k} turns were played.’)

Listing 10: Playing turn example

Turn 1

Active player "Rock" plays
Dice:

whitel 3

white2 5

green 4

red 4

yellow 2

blue 1

Player "Rock":
7 points

10

Color rows:

green row: [’12°, 211> ’10°’, 9, ’8’, 7, ’6’, b’ 4>
, 37, 227] Score =

red row: (2>, °3°, 7
117, 2127] Score =

blue row: [’12°, 11
, 237, 2] Score =

yellow row: [>2>, »3>, 24>, °5°, 26>, ’X’, ’8°, 9, 210’
, 2110, 127] Score

Player "Paper" plays

Player "Paper":
8 points
Color rows:
green row: [>12>, »>11°>, 210°’, ’9°, °X’, *7’, ’6°, ’57, 24>
, 237, 2] Score = 8
red row: [727, ;33, 747’ ;57, ’6’, 773, 787’ 791, 3107’ b
112, 2127] Score = 0
blue row: [’12°, 2117,
, 237, 2] Score = 0
yellow row: [>2>, »3>, 24>, »5°, 26>, 27>, 28’ , 29’ 210’
, 2110, 2127] Score = 0

)103,)97’)8)’ J?)’ 76},)57’)4)

Player "Scissors" plays

Player "Scissors":
8 points
Color rows:
green row: [>12>, »>11°>, 210°’, ’9°, ’X’, ’7’, ’6°, ’57, 24>
, 237, 2] Score = 8
red row: [>2>, °3°>, 24>, °5°, 262, >7°, >8>, 29’ , ’10°,
112, ’12°] Score = 0
blue row: [>12°, >11°, >10°, ’9°, ’8°, 7, ’6°, ’57, 4>
’37, 27] Score = 0
yellow row: [’2>, °3’, 24>, °5°> 6>, 277, °8’>, 79’ 10’
, 2110, 127] Score = 0

End of turn

11

Turn 2

Active player "Paper" plays
Dice:

whitel 6

white2 4

green 1

red 2

yellow 3

blue 2

Player "Paper":
13 points
Color rows:

green row: [>12>, »>11°>, 210°’, ’9°, °’X’, *7’, ’6°, ’X’, 4>
, 237, 2] Score = 13

red row: [127, ;33, 747’ ;57, ’6’, 77;, 787’ 79;, 3107, b
112, 2127] Score = 0

blue row: [>12>, »11>, >10’, ’9°, ’8’, ’7’, ’6°, ’5’, 4>
, 237, 2] Score = 0

yellow row: [>2>, »3>, 24>, »5°, 26>, 27>, 28’ , 29’ 210’

, 2110, 2127] Score = 0

Player "Rock" plays

Player "Rock":
17 points
Color rows:
green row: [>12°, 2112, »X’, ’9>, 28>, 7, ’6°, ’5’, 4’
237, 2] Score = 10
red row: [>2>, °3°>, 24>, °5°, 262, >7°, >8>, 29’ , ’10°,
112, ’12°] Score = 0
blue row: [’12°, 211>

s)1OJ’)9},)8)’ J7),)6J’)5},)4)
’37, 2] Score = 0
yellow row: [’2°, 32, 24>, °5> 267 X> 287, 29’ 210’

, 2110, 127] Score = 7
Player "Scissors" plays
Player "Scissors":

8 points

12

Color rows:

green row: [’12°, 211> >10°’, 9, X, ’7’, ’6’, b’ 4>
, 37, 227] Score =

red row: (2>, °3°, 7
117, 2127] Score =

blue row: [’12°, 11
, 237, 2] Score =

yellow row: [>2>, »3>, 24>, »5°, 26>, 27>, 28’ , 29’ 210’
, 2110, 127] Score

End of turn

Turn 13

Active player "Rock" plays
Dice:

whitel 2

white2 6

green 2

red 6

yellow 4

blue 3

Player "Rock":
37 points
Color rows:
green row: [>12°>, 2112, °X?>, ?9°, 87, 7’ X7, 52 247
2’32, 27] Score = 16
red rTow: [:27’ 137, ;47’ ’52 ., 067, 77:’ ’X2, 292, 210,
112, 212°] Score = 8
blue row: [’12°, 211,
, 37, 2] Score = 6
yellow row: [>2>, °3>, 24>, °5°, 26>, ’X’, ’8°, 9, 210’
, 2110, 12°] Score = 7

Player "Paper" plays

13

Player "Paper":
50 points
Color rows:
green row: [>12>, »>11>, >10°, ’9°, ’X’, 7>, ’6°, ’X’, ’4°
, 737, ’27] Score = 13
red row: [>2>, °3’>, 24>, °5°>, 26’ , 77, X, ’9’>, 10,
112, ’12°] Score = 8

blue row: [7}(” ’11°, 210°, ’9°, 287, 7’ , 267, ’5’, 47
737, 2] Score = 12
yellow row: [’27, ’3’, *4’, ’5°, *X’, °7°, »87, 297, 710’
, X2, 127] Score = 17

Player "Scissors" plays

Player "Scissors":
43 points
Color rows:
green row: (12>, »>11>, 210, ’9°, °X’, ’°X’, ’6’, 67, 4’
’37, 27] Score = 15
red row: [)27’ 130 ;4),)XJ,)67,)77’ ;8)’ 79;’)10;, X

> 0127] Score = 16
blue row: [>12°>, >11°>, 2>10°, ’9°, °8’, *7’, ’6°, ’57, 6 24>
>3, 2] Score = 0
yellow row: [’2°, ’3’, ’X’, ’5°, *6°, *7’, ’X’, ’9°, 10’

, 211, 12°] Score = 12

End of turn

Game over! 13 turns were played.

Medieval volume measurement system
B.14. [5 points]

Several solutions were possible for the task. The solution provided does
the conversion by first determining the equivalent volume in gills and then
expresses it in terms of other units. A solution that scored all possible points

14

needed to have the following features:

e Correctly handles the definition of equivalent volume as given by the
task text.

The conversion algorithm works.

Correctly interprets the data produced by the conversion algorithm.

Reproduces the output, including s’ in gallons.

e No major misuse of Python data structures and functions.

Listing 11: Conversion between liters and medieval measurement system.

import math

def convert_1l_to_UK(liters):
ls_in_gils=4.546/(2*x5)

#We need the first integer that is larger than (liters/
ls_in_gils). We get it through math.ceil function.
ngils=math.ceil(liters/ls_in_gils)
#An equivalent solution is
#ngils=int (liters/ls_in_gils)
#if ((liters¥%ls_in_gils) !=0):
ngils+=1
units=["gallon", "pottle", "quart", "pint", "chopin", "
gill"]
gils_p_unit=32
print (f’{liters}1l fits into:’)
#Now do the conversion to other units by using integer
operations and starting from larger to smaller units.
for i, unit in enumerate (units):
nunits=ngils//gils_p_unit
if (nunits==1):
print (£ ’{nunits} {unit}’)
elif (nunits>1):
print (£ ’{nunits} {unit}s’)

#Subtract the ammount contained in the current unit.
ngils-=nunits*gils_p_unit

#Change the conversion ratio
gils_p_unit=gils_p_unit//2

15

Alliterations
B.15. [5 points]

Several solutions were possible for the task. The solution provided counts
the alliterations and gives the length of the longest by a single pass through
the sentence but other solutions were also possible. A solution that scored
all possible points needed to have the following features:

e It works for capitalized words.
e The algorithm works correctly to determine the number of alliterations.

e The algorithm works correctly to determine the length of the longest
alliteration.

e Return values are correctly extracted from the data structures used to
analyze the alliterations.

e No major misuse of Python data structures and functions.

Listing 12: One pass solution for alliteration problem.

def analyze_alliterations(sentence):
Preprocess the input
words=[part.lower () for part in sentence.split ()]

#Set up the initial conditions for the analysis

#Initial store first character of the first word, since
the loop starts working from the second word on
char_init=words [0] [0]

#Counts the number of words in an alliteration,
initialized to =zero.

#If it is larger than zero it means that we are inside an
alliteration.

counter=0

#Counts the number of alliterations found in the sentence
n_allit=0

#Records the length of the longest alliteration

encountered so far
n_words=0

16

#We start checking for alliterations from the second word
onward
for i in range(l, len(words)):
if (char_init==words[i][0]): # this is an alliteration
if (counter==0): #it is new to us
n_allit+=1
counter=2 #when we first see an alliteration
it has length 2 since it consists of 2 words
else:
counter+=1
else: #this is not an alliteration
char_init=words[i] [0] #remember the new first
letter to test against it later
n_words=max (n_words, counter)
counter=0 #set counter to zero, next repetition
of initial characters will be a new allteration

#If the sentence ends with an alliteration, we need to
check if it is maybe the longest we have ever seen

n_words=max (n_words, counter)

return n_allit, n_words

17

