
System Description

Al Hinai, Abdullah Andersson, Conny Forouzani, Sepehr
Halteh, Faris Ivanou, Aliaksandr Karkanis, Iosif
Klingsbo, Lukas Lan, Fangming L̊ang, Magnus
McCain, Daniel Sean Noorani Subramanian, Varun

Omer, Enghin Santos Rivera, Juan De Dios

January 16, 2015

Abstract

This document contains an overview of the different services that compose the en-
tirety of the project. The router part describes how the Ericsson Erlang NetInf
Router (EENR) works and how the modules within it interact. There is also a
Name Resolution Service (NRS) section of the document that covers the centralized
database and its structure. Another part describes WallE, the cleaning robot with
the purpose of removing faulty streams from the application. The Android service
section resides further down in the document, and contains information about the
android-service library, which runs in the background of the Android OS. Lastly,
the Android application part describes the structure of the application that does
streaming and playback.

Contents

1 Router 1

1.1 Overview . 1

1.2 Module overview . 1

1.2.1 eenr database mnesia . 1

1.2.2 eenr nrs client . 1

1.2.3 eenr signature validation.erl 2

1.2.4 eenr stat collector.erl . 2

1.2.5 eenr stat handler.erl . 2

1.2.6 eenr stat server.erl . 2

1.2.7 eenr stat writer.erl . 2

1.2.8 eenr storage sup.erl . 2

1.2.9 eenr udp utils.erl . 2

1.3 Testing . 2

2 NRS 3

2.1 Overview . 3

2.2 Module overview . 3

2.2.1 nrs . 3

2.2.2 nrs api . 3

2.2.3 nrs api client . 4

2.2.4 nrs app . 4

2.2.5 nrs sup . 4

2.2.6 nrs db . 4

2.3 Testing . 4

1

3 WallE 5
3.1 Overview . 5
3.2 Module overview . 5

3.2.1 walle . 6
3.2.2 walle app . 6
3.2.3 walle length guard . 6
3.2.4 walle mdns . 6
3.2.5 walle monitor . 6
3.2.6 walle nrs client . 6
3.2.7 walle services . 6
3.2.8 walle subscriber . 6
3.2.9 walle subscriber sup . 6
3.2.10 walle sup . 6

4 Android service 7
4.1 Overview . 7
4.2 Package overview . 7

4.2.1 edu.projectcs.netinf . 8
4.2.2 edu.projectcs.netinf.messages 8
4.2.3 edu.projectcs.netinf.ndo . 8
4.2.4 edu.projectcs.netinf.node . 9
4.2.5 edu.projectcs.netinf.node.api 9
4.2.6 edu.projectcs.netinf.node.get 9
4.2.7 edu.projectcs.netinf.node.notify 9
4.2.8 edu.projectcs.netinf.node.publish 9
4.2.9 edu.projectcs.netinf.node.search 10
4.2.10 edu.projectcs.netinf.node.services 10
4.2.11 edu.projectcs.netinf.node.services.database 10
4.2.12 edu.projectcs.netinf.node.services.http 10
4.2.13 edu.projectcs.netinf.node.services.udp 10
4.2.14 edu.projectcs.netinf.node.sub 11
4.2.15 edu.projectcs.netinf.service . 11
4.2.16 edu.projectcs.netinf.service.queue and

edu.projectcs.netinf.service.queue.impl 11
4.2.17 edu.projectcs.netinf.service.sender and

edu.projectcs.netinf.service.sender.impl 12

5 Android application 13
5.1 Overview . 13
5.2 User Interface (UI) design process . 13
5.3 Package overview . 14

5.3.1 edu.projectcs.falun . 14
5.3.2 edu.projectcs.falun.activities 14
5.3.3 edu.projectcs.falun.api . 15
5.3.4 edu.projectcs.falun.player . 16
5.3.5 edu.projectcs.falun.send . 16
5.3.6 edu.projectcs.falun.streamer 16
5.3.7 edu.projectcs.falun.watch . 17
5.3.8 edu.projectcs.falun.watch.drawer 17
5.3.9 The res folder . 17

5.4 Testing . 18

Chapter 1

Router

1.1 Overview

The Ericsson Erlang NetInf Router (EENR) is an implementation of a NetInf router
originally implemented by the Project CS 2012 group and extended by Marcus
Ihlar in his master thesis. This implementation has been updated with several
features and fixes. A few examples of this include a stand-alone NRS featuring
document-database-like searches in metadata, a statistics collection platform, and a
new static routing model storing data using Mnesia, which is a distributed, soft real-
time database management system written in the Erlang programming language.

1.2 Module overview

1.2.1 eenr database mnesia

The NetInf routers features an implementation of the named data object (NDO)
database (NRS) using Mnesia, which supports all functionality defined in eenr storage.erl.
The routers have their own persistent database to make sure that ICN functionality
is maintained. The router database contains two tables: db and search. The db
record contains a key/value pair where the key is the NetInf URI and the value is
the record ndo info, and the search record contains another key/value pair tuple
where the key is the keyword used to find the URI and value is the set of NetInf
URIs matching that keyword. It is currently not able to perform the metadata
search functionality that the central NRS has.

1.2.2 eenr nrs client

This module contains a client library for the centralized NRS API. It implements
API functions such as get locator, which specifies where the object might be found,
exists which checks whether an NDO with a URI is known by the NRS, two search
functions to search using keywords and metadata, and publish to publish. It also
contains some internal functions that are mostly for parsing the JSON using a library
named jiffy.

1

1.2.3 eenr signature validation.erl

This module validates signatures attached to notification messages.

1.2.4 eenr stat collector.erl

This module handles the top level functionalities of the statistics collection platform.
It contains several functions such as update stats which adds a request to the statis-
tics, poll stats whose purpose is to collect and reset the statistics, and avg latencies
to compute the average latencies.

1.2.5 eenr stat handler.erl

The module features a cowboy handler module and serves statistics as JSON by
long-polling eenr stat server.

1.2.6 eenr stat server.erl

This module contains functions that collect statistics from several resources. The
statistics will be distributed among the consumers periodically.

1.2.7 eenr stat writer.erl

This module contains functions which are responsible for maintaining CSV files
for statistics and writes samples pushed from eenr stat server to those files. It is
responsible for starting and initializing the statistics collection server and of writing
the statistics to file.

1.2.8 eenr storage sup.erl

This module contains the code of Supervisor for eenr storage workers. Supervisors
are responsible of organizing which process must stay alive for an application to
function as intended.

1.2.9 eenr udp utils.erl

This module contains essentials for testing “get request” and “get response” when
the application is using UDP.

1.3 Testing

The router has two common test suites. One is called integration SUITE and is a
fairly complete test of the HTTP convergence layer. The other is called udp SUITE
and only tests GET requests over UDP.

The tests are executed with the tests make target. The makefile automatically
instruments for coverage analysis.

2

Chapter 2

NRS

2.1 Overview

The NRS is a centralized NetInf database which the EENR router uses. It also
allows queries in the metadata of NDOs, similar to a document-oriented database.
However, it is currently implemented using Mnesia rather than a document database.

2.2 Module overview

The NRS is organized into the following modules

• nrs

• nrs api

• nrs api client

• nrs app

• nrs db

• nrs sup

2.2.1 nrs

The nrs module is the main module of the NRS application. It provides the start
up for the NRS, including all its dependencies.

2.2.2 nrs api

A ranch protocol callback that implements the network API of the NRS.

3

2.2.3 nrs api client

A simple client for the NRS network API, used by the test suite.

2.2.4 nrs app

The application module of the NRS.

2.2.5 nrs sup

Main supervisor of the NRS.

2.2.6 nrs db

Implements the NRS database on top of Mnesia. The main reason for choosing
Mnesia was because of its persistent storage capacity, allowing the datasystem to
survive even if the nodes crash.

2.3 Testing

The nrs has two common test suites. One is called eunit SUITE and bootstraps a
single trivial EUnit test in the nrs db tests file. The other is called proper SUITE
and uses PropER[4], the property testing tool to compare the behaviour of the nrs db
module against a state machine model of its behaviour, defined in the nrs proper statem
module.

The tests are executed with the tests make target. The makefile automatically
instruments for coverage analysis.

4

Chapter 3

WallE

3.1 Overview

WallE is the cleaning robot of the Falun 2015 Android streaming solution. Its pur-
pose is to tag streams that have been interrupted by a network outage or application
crash, so they will no longer appear as live. It also deletes recorded streams that are
shorter than a set length (currently 2 seconds by default), stopping streams from
showing up in the history if a user starts and quickly stops them.

3.2 Module overview

WallE is organized into the following modules

• walle

• walle app

• walle length guard

• walle mdns

• walle monitor

• walle nrs client

• walle services

• walle subscriber

• walle subscriber sup

• walle sup

5

3.2.1 walle

This module is the main module of the WallE application. It provides the start of
WallE, including all of its dependencies.

3.2.2 walle app

The application callback of the WallE application, which provides the interface so
that OTP can start it.

3.2.3 walle length guard

This module is a gen server that periodically queries the NRS for finished streams
and deletes those that are too short.

3.2.4 walle mdns

A simple mDNS client library for doing service queries.

3.2.5 walle monitor

Periodically searches the NRS for new streams and starts walle subscriber processes
for those streams. It maintains a table of all monitored streams so that no more
than one walle subscriber is started per stream.

3.2.6 walle nrs client

A client library for the centralized NRS.

3.2.7 walle services

Caches mDNS service discovery results and is the frontend for all service discovery
functionality. In particular, it serves the UDP endpoint used by walle subscriber.
When WallE is configured with a static UDP endpoint, it will return that instead
of performing mDNS.

3.2.8 walle subscriber

Monitors a single stream by subscribing to it. When it stops receiving notifications,
it checks if it was tagged as dead in the NRS. If it was not, it either tags it as dead
or deletes it, depending on its length.

3.2.9 walle subscriber sup

Supervisor for the walle subscriber processes.

3.2.10 walle sup

Supervisor for the walle app.

6

Chapter 4

Android service

4.1 Overview

The library android-service is a bound Android service that runs in the background
of the Android OS. This section explains each package and the class files in them,
as well as their responsibilities in the system.

4.2 Package overview

The android-service is organized in 18 packages:

• edu.projectcs.netinf

• edu.projectcs.netinf.messages

• edu.projectcs.netinf.ndo

• edu.projectcs.netinf.node

• edu.projectcs.netinf.node.api

• edu.projectcs.netinf.node.get

• edu.projectcs.netinf.node.notify

• edu.projectcs.netinf.node.publish

• edu.projectcs.netinf.node.search

• edu.projectcs.netinf.node.services.database

• edu.projectcs.netinf.node.services.http

• edu.projectcs.netinf.node.services.udp

7

• edu.projectcs.netinf.node.sub

• edu.projectcs.netinf.service

• edu.projectcs.netinf.service.queue

• edu.projectcs.netinf.service.queue.impl

• edu.projectcs.netinf.service.sender

• edu.projectcs.netinf.service.sender.impl

4.2.1 edu.projectcs.netinf

This package contains files which provide common functionality. NetInfException.java
is an Exception class used to signal generic NetInf related errors. NetInfUtils.java
contains utility methods for working with NetInf. SignatureUtils.java contains util-
ity methods for signing NetInf messages.

4.2.2 edu.projectcs.netinf.messages

This package describes the five messages of the NetInf protocol and their corre-
sponding responses. These messages are: notify, get, publish, search and subscribe.
Each one of the messages has a corresponding class representing its response, e.g.
GetResponse.java, which is the result of a Get, from Get.java. These responses
are extended from an abstract class named Response, which is extended from Mes-
sage.java. Response.java is a small class that returns the status and type of the
response. Message.java is also another abstract class that returns the message ID,
type and NDO (if it has one). Both the request and response classes are immutable
and are constructed with the builder pattern. Requests are executed by calling Re-
quest.submit(). However, the local NetInf node must have been started before doing
so.

4.2.3 edu.projectcs.netinf.ndo

NetInf is an architecture that relies on the forwarding of requests for NDOs. This
package is related to these NDOs, which are defined in the Ndo class, along with
their functionalities. This package also has a Metadata class, an immutable wrapper
around the Android class JSONObject, representing the information that belongs to
an NDO, and a Locator class, which specifies where the object might be found.

8

4.2.4 edu.projectcs.netinf.node

This package, including its sub packages, define the logic implementing a NetInf
node. This package contains two classes. Node.java is a singleton class that repre-
sents a NetInf node and is used to stop and start it. Settings.java provides utility
methods for accessing the settings for the node.

4.2.5 edu.projectcs.netinf.node.api

There is only one file, Api.java, residing inside this package. It is the base class
for convergence layers, whose responsibility is to accept requests, transform them
into the internal representation, pass them to the node, and finally send back the
response.

4.2.6 edu.projectcs.netinf.node.get

This package contains files that define how to interact with GET and GET-RESP
messages. The file GetController.java controls the execution of GET messages. Get-
Service.java is an interface to be implemented by convergence layers that represents
the output of NetInf GET messages from the Node. Its responsibility is to send
GET messages over some NetInf convergence layer, receive the response, transform
it into the internal GetResponse representation, and return it to the Node. InPro-
gressTracker.java keeps track of requests that are in progress and their associated
asynchronous results. The file RequestAggregator.java keeps track of aggregated
GET messages.

4.2.7 edu.projectcs.netinf.node.notify

This package has a similar functionality as edu.projectcs.netinf.node.get, except
this one works with NOTIFY messages. NotifyService.java is an interface to be
implemented by convergence layers to send NOTIFY messages, transforms them
into NotifyResponse and return them to a node. NotifyController.java implements
the common logic to handle the notify messages, both received by a convergence
layer and locally submitted. NotifyCallback.java is a callback that is invoked after
a NotifyResponse is received.

4.2.8 edu.projectcs.netinf.node.publish

This package contains files that define how to interact with PUBLISH and PUBLISH-
RESP messages. The interface provided by PublishService.java is an interface to be
implemented by convergence layers that represents an output of NetInf PUBLISH
messages from the node. Its responsibility is to send PUBLISH messages over some
NetInf convergence layer, receive the response, transform it into the internal Pub-
lishResponse representation, and return it to the Node. The class file PublishCon-
troller.java controls the execution of PUBLISH messages.

9

4.2.9 edu.projectcs.netinf.node.search

This package has a similar functionality as edu.projectcs.netinf.node.publish, except
this one works with SEARCH and SEARCH-RESP messages. SearchController.java
is responsible for controlling the execution of the SEARCH messages and Search-
Service.java is an interface to be implemented by convergence layers that sends
SEARCH messages over a NetInf convergence layer, receives the responses, trans-
forms them into internal SearchResponse objects and return them to the node.

4.2.10 edu.projectcs.netinf.node.services

This package contains the services and convergence layers provided by the NetInf
node. It also contains ServiceDiscovery.java, which implements discovery of other
NetInf nodes via Multicast DNS.

4.2.11 edu.projectcs.netinf.node.services.database

This package only contains the class Database.java, which defines the database.
The database contains all NDOs known to the node. The contents of the NDOs are
stored in the filesystem and not in the Database, but the Database class abstracts
this separation.

4.2.12 edu.projectcs.netinf.node.services.http

The HTTP package defines the HTTP convergence layer. GetHandler.java handles
incoming GET messages. HttpApi.java is the class that handles starting and stop-
ping the HTTP convergence layer. The class HttpCommon.java defines the utility
methods of the package. HttpGetResponseHandler.java is used to parse GET-RESP
messages. HttpGetService.java handles GET messages. HttpPublishService.java
handles PUBLISH messages. HttpSearchService.java is responsible for handling
SEARCH messages. HttpServer.java accepts incoming connection attempts, but
it is currently only supporting GET messages.

4.2.13 edu.projectcs.netinf.node.services.udp

The UDP package handles all the functionalities related to the UDP protocol in
the NetInf service. UdpApi.java handles the top level functionalities of the pro-
tocol, from which the protocol can be started and/or finished. UdpCommon.java
defines the utility methods. The GET, NOTIFY and SUB NetInf messages are
handled by UdpGet.java, UdpNotify.java and UdpSub.java, respectively. UdpInPro-
gressTracker.java keeps track of the UDP convergence layer requests. UdpServer.java
accepts incoming UDP messages which are parsed by UdpParser.java.

10

4.2.14 edu.projectcs.netinf.node.sub

The sub package defines the interface used to provide output of SUB and input
of SUB-RESP messages, as well as the common control logic. The file SubCon-
troller.java controls the execution of SUBs. The Subscriber.java class represents a
subscriber. SubService.java represents an output of NetInf SUB message from the
Node. The responsibility of a SubService is to send SUB messages over some NetInf
convergence layer, receive the response, transform it into the internal SubResponse
representation, and return it to the Node.

4.2.15 edu.projectcs.netinf.service

The service package collectively implements the glue required to use the NetInf
library as an Android Bounded Service[1]. Files that are connected to the ser-
vice can be found in this package. NetinfService.java is the implementation of
android.app.Service; it handles starting and stopping the service as well as incom-
ing requests over IPC. ClientApplication.java starts up the service and a node.
MessageCodes.java is an enum of the IPC message types sent and received by the
service. MessagingNotifyCallback.java implements node.notify.NotifyCallback by re-
laying notifications over a android.os.Messenger. NdoProcessor.java maintains the
threads that execute requests sent to the service. ServiceUtils.java contains help-
methods for serialization/deserialization and default properties.

To use the service in another application, the following has to be added to that
application’s manifest file

<service android:process="edu.projectcs.netinf.service"

android:name="edu.projectcs.netinf.service.NetinfService" />

There is no client-side API for the service. For efficiency, the user of the service
will implement the client side of the IPC. A good starting point and reference for
that is the code of the edu.projectcs.falun.api package, which implements that part
of the Falun 2015 Android app.

4.2.16 edu.projectcs.netinf.service.queue and
edu.projectcs.netinf.service.queue.impl

These packages are responsible for queueing the requests that will be executed by
the appropriate sender. The most important class of the package is an abstract
class named NdoQueue.java. Five classes are extended from NdoQueue, these are:
GetQueue.java, NotifyQueue.java, PublishQueue.java, SearchQueue.java and Sub-
scribeQueue.java.

11

4.2.17 edu.projectcs.netinf.service.sender and
edu.projectcs.netinf.service.sender.impl

The class NdoSender.java from the sender package represents the consumer in
the Producer-Consumer pattern. It executes requests and calls appropriate call-
back functions. Like NdoQueue, NdoSender is also an abstract class from which
five other classes, located in the sender.impl package, are extended. These are:
GetSender.java, NotifySender.java, PublishSender.java, SearchSender.java and Sub-
scribeSender.java.

12

Chapter 5

Android application

5.1 Overview

The application section describes the Android application used to let end users watch
currently or previously streamed content or stream videos of their own.

This section also describes how the Android application is structured and what
each package and class therein are responsible for. This is to simplify for other
developers to update and/or extend the code in the future. There is also a section
containing information on how the application’s user interface was designed.

5.2 User Interface (UI) design process

In order to have a design that would be user friendly enough to not need major
changes, the Android application went through a very thorough design process.
The design was made by a group of seven people, in the time span of two weeks.
Six members of this group formed part of a “design team”, and the seventh member
acted as an auxiliary member.

Initially, six separate designs were created. Each model would show the designer’s
interpretation of how the application would look, as well as the functionalities that
the user would be able to use. The six designs were then compared and discussed
within the group, and merged into three different designs. Each model would be
intentionally different from the others, allowing to test different features.

Paper prototypes were created for each of the three designs, allowing the team to
quickly test how users would interact with the models. All of the interviews followed
the same structure: explain the task to the users, give them a number of tasks to
perform on the paper prototype (such as start a recording, view a stream, etc.), and
evaluate how each user performed. For each prototype, four users were interviewed
except for the last prototype where six people were interviewed, giving the team

13

enough results to improve the design and build a final prototype. This final proto-
type included the best features of each previous idea, as well as the improvements
that emerged from the previous interviews. The same interview process was followed
for this final prototype, resulting in a final application design. No programming for
the user interface was performed until the team had enough qualitative data about
the prototypes to produce a final design.

5.3 Package overview

The android-netinf project is organized in 8 packages:

• edu.projectcs.falun

• edu.projectcs.falun.activities

• edu.projectcs.falun.api

• edu.projectcs.falun.player

• edu.projectcs.falun.send

• edu.projectcs.falun.streamer

• edu.projectcs.falun.watch

• edu.projectcs.falun.watch.drawer

5.3.1 edu.projectcs.falun

The top level package of the application. Contains the subclass of android.app.Application,
ClientApplication.java.

5.3.2 edu.projectcs.falun.activities

This package contains all the Android activity classes.

AboutActivity.java presents information about the team that developed the ap-
plication.

MainActivity.java is the main page of the application. When it is visited for the
first time, a tutorial will be presented. From this activity the user can navigate to
all of the activities of the application. The preferences are also loaded here.

SettingsActivity.java is the settings page. It contains some developer options to
tweak settings such as the UDP port number, the type of routing, among other op-
tions. Upon opening the activity, it will load the settings using an Android feature
called PreferenceFragment from a file named preferences.xml, which resides in the

14

src/xml folder of the android-service library. Note that the activity SettingsActiv-
ity.java is launched after touching the screen four times using three fingers. It is
meant to be used by developers, and is thus hidden from the users.

SendActivity.java is used for testing and debugging several features of the plat-
form. It allows the user to send NDOs, publish NDOs, publish messages, get mes-
sages, search for messages and perform subscriptions.

StreamingActivity.java is where the user streams the video. This class shows the
preview of the camera and handles the recording and switching between the front
and back camera. When the activity opens, it will ask the user to add a name and
a description to the video (this step can be avoided if the user decides to check the
“do not show again” checkbox).

VideoActivity.java is responsible for playing the video streams using a player
called ExoPlayer. The activity has a custom UI that displays the title and descrip-
tion of the video, and a label that will show the text “Live” if the video currently
playing is a live stream.

WatchActivity.java is responsible for showing the user the videos (live or not
live). The activity has three main components: a navigation drawer, a list view,
and a map view. The navigation drawer allows the user to customize the content of
the views, the list view shows all the videos using a list, and the map view shows
the location of the videos as pins on a map.

5.3.3 edu.projectcs.falun.api

The api package provides an abstraction of the backend and the serialization format
of streams and chunks. It handles the publish and subscribe process, the creation
of chunks and the metadata of the video.

Api.java represents a connection to the backend and allows the access to in-
formation about, and contents of, streams and creates the necessary objects that
perform the tasks discussed above. It must be manually closed when it is no longer
needed.

ApiNotifyCallback.java is responsible for receiving notification messages and call-
ing NextChunkCallback.

Callback.java is the callback that is called when an operation completes.

ChunkInfo.java describes a chunk of the stream. Related to ChunkInfo are the
classes ChunkQueryBuilder.java, which constructs queries for chunks belonging to a
stream, and NextChunkCallback.java, which is called when a new chunk is available
and when a subscription succeeds or fails. QueryBuilder.java constructs queries for
the streams. It contains information such as the liveness status of the stream and the
date when it was started. Result.java represents a result, which is either a result of
type < T > or an error. Lastly, there is the StreamInfo.java class which describes a
current or past stream by using its title, description, starting and end time, location,
region etc. ApiNotifyCallback.java is used for abstracting the notification inter-
process communication with the service and calling the NextChunkCallback.

15

5.3.4 edu.projectcs.falun.player

This package is responsible for the playback of videos. ExoPlayer, a project that
provides a pre-built player that can be extended, is used for this task. It supports
features such as persistent caching and dynamic adaptive streaming over HTTP
(MPEG-DASH)[2]. Of the seven classes that are contained in the package, three
of them (NetinfDataSource.java, NetinfStreamChunkSource.java and NetinfStream-
RendererBuilder.java) are related to the managing of the videos chunks. Live-
nessTracker.java decides if a playback is considered to be a live stream. Video-
Player.java is a wrapper around ExoPlayer that provides a higher level interface,
and VideoUtil.java provides utility methods for the video player.

5.3.5 edu.projectcs.falun.send

This package contain classes related to SendActivity. ResponseHandler.java handles
the responses from the NetInf Service.

5.3.6 edu.projectcs.falun.streamer

This package deals with the camera functionalities and the encoding of video streams.
CameraPreview.java handles the preview of the camera. This allows for, among
other actions, setting the maximum resolution and desired frames per second of the
video stream, depending on the bandwidth capabilities of the network.

ChunkPublisher.java is a process running on a separate thread that is responsible
for publishing the collected chunks.

DetailsDialogue.java contains the code for the small popup dialog box where the
user enters the title and description of the stream.

Encoder.java handles the encoding of the video stream. This class sets the
interval for the i-frames, bit rate and MIME type. This class is also in charge of
sending the video chunks through the api, which is connected to the backend.

EncodingPreviewCallback.java is responsible for allocating callback buffers and
attaching them to the camera.

ImageTransformation.java contains methods to transform images to different
color formats.

MovingAverage.java is a class that computes a moving average over a fixed
amount of samples.

OutputStreamChannel.java implements a WritableByteChannel around an Out-
putStream.

TimeUpdater.java handles the timer present on the screen while streaming.

Utils.java contains some useful utilities for the encoder, like computation of the
size of video frames in YV12 and YUV420 formats.

16

5.3.7 edu.projectcs.falun.watch

This package contains classes which are related to the list view, map view and the
slider menu. Available videos will be displayed as a list of clickable items in the
list view tab and as pins on the map view tab. Displayed videos can be filtered by
using the slider menu. They can be filtered by choosing whether they are live or
not, choosing a specific date and time, and choosing a specific region. In addition to
filtering, the displayed videos in the list view can be sorted by title, date and region.
The available videos will be displayed as pins on the map based on the location
where they were recorded.

ListViewFragment.java holds the list of streams and is responsible for updat-
ing it. MapViewFragment.java defines the map view and everything therein. The
StreamInfoAdapter.java class holds the information regarding each stream, such as
the title and region. TimeManager.java, is responsible for managing the time.

5.3.8 edu.projectcs.falun.watch.drawer

The drawer package contains everything related to the side menu of the watch page.
Drawer.java defines the side menu, while RegionSpinner.java and SortSpinner.java
define the two spinners for selecting the region or selecting how to sort the list of
streams.

5.3.9 The res folder

The res folder contains images and XML files used for the UI of the Android appli-
cation. These XML files are divided into several folders:

• layout: Contains the layout of every activity of the application. These files use
the following naming convention: activity activityname.xml. This folder also
contains list fragment.xml and map fragment.xml, both of which are fragments
(portion of user interface) implemented in the watch activity. drawer item.xml
is the navigation drawer from WatchActivity.java. spinner item.xml is used as
a template for the view that populates the navigation drawer, and list view.xml
populates the list of stream from the watch activity.

• drawable: Contains all the images and icons that are used in the application.

• values: Contains strings, colors, dimensions, themes and styles that are refer-
enced from the code.

• menu: Contains the options the user will have when touching the overflow
button from the action bar.

17

5.4 Testing

The testing of the Android application is performed using a UI/Application exerciser
called Monkey [3], which can be used to stress-test applications by generating pseudo-
random streams of clicks, gestures, and touches. Throughout the duration of the
project, this test proved to be effective in finding race conditions and other flaws in
the application.

18

Bibliography

[1] Android bounded services. http://developer.android.com/guide/

components/bound-services.html. Accessed: 2014-12-12.

[2] Exoplayer. https://developer.android.com/guide/topics/media/

exoplayer.html. Accessed: 2015-01-16.

[3] Ui/application exerciser monkey. https://developer.android.com/tools/

help/monkey.html. Accessed: 2014-12-16.

[4] Manolis Papadakis and Konstantinos Sagonas. A proper integration of types
and function specifications with property-based testing. In Proceedings of the
10th ACM SIGPLAN workshop on Erlang, pages 39–50. ACM, 2011.

19

http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html
https://developer.android.com/guide/topics/media/exoplayer.html
https://developer.android.com/guide/topics/media/exoplayer.html
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html

	Router
	Overview
	Module overview
	eenr_database_mnesia
	eenr_nrs_client
	eenr_signature_validation.erl
	eenr_stat_collector.erl
	eenr_stat_handler.erl
	eenr_stat_server.erl
	eenr_stat_writer.erl
	eenr_storage_sup.erl
	eenr_udp_utils.erl

	Testing

	NRS
	Overview
	Module overview
	nrs
	nrs_api
	nrs_api_client
	nrs_app
	nrs_sup
	nrs_db

	Testing

	WallE
	Overview
	Module overview
	walle
	walle_app
	walle_length_guard
	walle_mdns
	walle_monitor
	walle_nrs_client
	walle_services
	walle_subscriber
	walle_subscriber_sup
	walle_sup

	Android service
	Overview
	Package overview
	edu.projectcs.netinf
	edu.projectcs.netinf.messages
	edu.projectcs.netinf.ndo
	edu.projectcs.netinf.node
	edu.projectcs.netinf.node.api
	edu.projectcs.netinf.node.get
	edu.projectcs.netinf.node.notify
	edu.projectcs.netinf.node.publish
	edu.projectcs.netinf.node.search
	edu.projectcs.netinf.node.services
	edu.projectcs.netinf.node.services.database
	edu.projectcs.netinf.node.services.http
	edu.projectcs.netinf.node.services.udp
	edu.projectcs.netinf.node.sub
	edu.projectcs.netinf.service
	edu.projectcs.netinf.service.queue and edu.projectcs.netinf.service.queue.impl
	edu.projectcs.netinf.service.sender and edu.projectcs.netinf.service.sender.impl

	Android application
	Overview
	User Interface (UI) design process
	Package overview
	edu.projectcs.falun
	edu.projectcs.falun.activities
	edu.projectcs.falun.api
	edu.projectcs.falun.player
	edu.projectcs.falun.send
	edu.projectcs.falun.streamer
	edu.projectcs.falun.watch
	edu.projectcs.falun.watch.drawer
	The res folder

	Testing

