
System Evaluation

Al Hinai, Abdullah Andersson, Conny Forouzani, Sepehr

Halteh, Faris Ivanou, Aliaksandr Karkanis, Iosif

Klingsbo, Lukas Lan, Fangming Lång, Magnus

McCain, Daniel Sean Noorani Subramanian, Varun

Omer, Enghin Santos Rivera, Juan De Dios

January 16, 2015

Abstract

We experimentally test the cache e�ectiveness and latency of our streaming solution,
comparing it to other existing streaming services. The results of these experiments
show that although our solution still has a few issues that have to be �xed, it
already shows interesting results, leading us to believe that using NetInf for live
video streaming is feasible.

Contents

1 Cache e�ectiveness evaluation 1

1.1 Experiment setup . 1

1.2 Results . 1

1.3 Discussion . 1

2 Experimental latency comparison 2

2.1 General information on other streaming solutions 2

2.1.1 Twitch . 2

2.1.2 Youtube . 2

2.1.3 Steam . 2

2.2 Experiment Set-Up . 3

2.3 Results . 3

2.4 Discussion . 4

3 Conclusion 4

1 Cache e�ectiveness evaluation

In this section, we show the experiments and results to measure the performance of
our backend and e�ectiveness of our caching solution.

1.1 Experiment setup

Three EENR instances are set up on a single subnet, one of them hosting the NRS.
Eight phones are connected to the same subnet via WiFi. One of the phones was
selected to perform the streaming role, and the remaining seven phones were tuned
in to that stream. The stream used a target bitrate of 1000 kbit/s and chunk size
of 2 seconds. After a delay of approximately eight minutes, letting all the client
phones stabilize their streams, a period of three minutes was chosen during which
statistics from the routers were collected.

All phones were allowed to randomly pick a router to connect to.

1.2 Results

The results can be found in in Table 1. A total of 104 chunks were published during
the 3 minute sample period.

Router Clients Streamers Hits Misses Network RX Network TX
Toaster 3 0 425 104 1.125 Mbit/s 4.915 Mbit/s
Bowser 3 1 698 0 2.083 Mbit/s 6.552 Mbit/s
Luigi 1 0 104 105 1.039 Mbit/s 1.967 Mbit/s

Table 1: Cache e�ectiveness experiment results

1.3 Discussion

We believe that the results of this experiment are quite curious. One might note that
the total number of GET requests (1436) is signi�cantly higher than the expected
number (104×(2+7) = 936). We speculate that this is due to a bug in the application
which is caused by the prefetch of chunks mentioned in NOTIFY messages not being
cached properly, and thus being re-requested when they are bu�ered in the player.
This speculation seems to indicate that each chunk would be downloaded twice,
which implies there should be a total of (104 × (2 + 7 × 2) = 1664) requests. The
fact that the measured total is less than this number can easily be explained: it is
due to a known de�ciency in the code that �lls the player bu�er. When it receives
chunks out of order, it will not insert the newly found chunks at the appropriate
place in the bu�er, but rather just drops them silently. As the chunks that were not
downloaded twice arrived out of order, they were skipped during playback.

Other than this anomaly, these stats show that the caching scheme works as
designed. None of the servers had to provide the full bandwidth requirements of 7
clients.

1

2 Experimental latency comparison

In this section we compare the streaming latency of our solution to three other
streaming solutions:

• Twitch.tv

• Youtube

• Steam Broadcasting

2.1 General information on other streaming solutions

2.1.1 Twitch

Twitch is a platform that provides video game live streaming at a very large scale
range (approximately 5 million viewers), with a large number of concurrent streams.
They use Apple HLS for clients and RTMP for streamers. The typical chunk size
of a Twitch streams is 4 seconds, and they advertise a typical latency of 12 to 40
seconds.1

2.1.2 Youtube

Youtube contains a service called Youtube live that provides small to medium scale
general purpose live streaming by Youtube content producers, as well as large scale
professional streaming of sports events, concerts and news. They use Apple HLS and
MPEG-DASH for clients, depending on the device type the client uses and RTMP
for streamers. The typical chunk size of a Youtube stream is 5 seconds, and they
advertise a typical latency of up to 60 seconds.2

2.1.3 Steam

Steam is a software delivery and DRM platform, primarily intended for video games.
It recently announced[1] a streaming service, called Steam Broadcasting, primarily
intended for video game live streaming. Currently, the feature is in beta testing,
with restrictive limits on the number of viewers.

1http://blog.twitch.tv/2013/12/new-video-system-update-after-one-week-in-service/
2https://support.google.com/youtube/answer/2853700?hl=en&ref_topic=2853712

2

http://blog.twitch.tv/2013/12/new-video-system-update-after-one-week-in-service/
https://support.google.com/youtube/answer/2853700?hl=en&ref_topic=2853712

2.2 Experiment Set-Up

We measure the latency of each solution three times. The average latency is taken.

The following computers were used for the testing:

A Desktop, Intel Core2 Quad Q9400 (2.66GHz) CPU, running Linux 3.17.

B Desktop, Intel Core2 Quad Q9400 (2.66GHz) CPU, running Linux 3.13.

C Laptop, Intel i5-3317U (1.7GHz) CPU, running Windows 8.1.

D Laptop, Intel i5-M430 (2.27GHz) CPU, running Windows 7.

The test of Twitch.tv and Youtube was measured using machine A with OBS-
Studio3 on the streaming side and machine B with Chrome 39 on the client side.
The video stream was h264 at 720p resolution and 2500 kbit/s bitrate. The three
samples were taken using three di�erent client computers.

The test of Steam Broadcasting used two di�erent Windows laptops (since the
Linux client of Steam was not capable of streaming at the time of the experiment) for
the streaming role. All machines were running Steam package version 1420770381.
The three samples were taken using machine pairs C to D, D to C, and D to A.

The following phone models were used for the testing of our solution.

a Motorola Moto G X1032, 4-core Cortex-A7 (1.2GHz), running Android 4.4.4.

b HTC One X+, 4-core Nvidia Tegra 3 (1.7GHz), running Android 4.4.4.

g Google/Samsung Galaxy Nexus, 2-core Cortex-A9 (1.2Ghz), running Android
4.4.4.

The measurements of our solution were taken while varying the chunk size from
1 second to 5 seconds. 6 seconds and above was not be tested as the chunk size
exceeded the allowed size of IPC packets in Android. The streaming came from a
phone of model a. The samples were taken simultaneously on one phone of each
model. The latency was noted both just after a stream was joined, as well as after
15 minutes of continuous playback, as the player does not attempt to catch up if the
playback is temporarily paused by a transient slowdown. When measuring with a 1
second chunk size, the second sample was taken after only 12 minutes, as a memory
leak in the MP4 library crashes the app with the streaming role after that point.

All clients and streamers were connected to the university network.

2.3 Results

The results can be found in Table 2 and Table 3.

3https://github.com/jp9000/obs-studio/commit/428a7def16c0d63d19842b61b89ce4fd285bd861

3

https://github.com/jp9000/obs-studio/commit/428a7def16c0d63d19842b61b89ce4fd285bd861

Chunk Size Initial Latency After 15min
1s 10.7s 18s
2s 8.7s 18.7s
3s 10s 22.3s
4s 9s 11.3s
5s 12s 13s

Table 2: Latency experiment results for our solution

Solution Latency
Twitch 17.3s

Youtube 35.7s
Steam 9.7s

Table 3: Latency experiment results for other solutions

2.4 Discussion

As can be seen in Table 2, the average latency of our solution actually decreases when
the chunk size is increased up to 4 seconds, especially in the �after 15min� sample.
We speculate this is due to the retry logic in the streaming phone getting su�cient
time to recover from failed publish attempts, something that happens surprisingly
often. We think the failures is caused by a bug rather than transmission errors in
the network, and it is probable that �xing this bug will improve the latency when
using smaller chunks.

Even so, the latency of our solution is very close to that of the best other solution.
This is a good sign considering our solution has not yet been optimized much for
latency.

3 Conclusion

These experiments show that the approach of using NetInf for live video streaming
is possible and has promise of being comparable to traditional methods. However,
they also showed that our solution require some more polishing to provide adequate
stability and robustness.

4

References

[1] Valve Corporation. Introducing steam broadcasting. http://store.

steampowered.com/news/15117/, 2014. Accessed: 2015-01-14.

5

http://store.steampowered.com/news/15117/
http://store.steampowered.com/news/15117/

	Cache effectiveness evaluation
	Experiment setup
	Results
	Discussion

	Experimental latency comparison
	General information on other streaming solutions
	Twitch
	Youtube
	Steam

	Experiment Set-Up
	Results
	Discussion

	Conclusion

