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Abstract

In this study two kinds of models to evaluate the quality of play in
football have been developed, looking at shots and corners, respectively,
in order to give football clubs insights and possible ways to gain advantage
over opposing teams. The first model aims at predicting weather a shot
from a certain position of the pitch will results in a goal or not. At first,
only the player in possession of the ball was considered in the model, after
which the model was modified taking into account the surrounding players.
The aim of the second model is to answer the question 'What makes
a successful corner?’. The models were made in collaboration with the
company Twelve and Hammarby IF. Using their existing expected goals
model and data set, a logistic regression and a XGBoost classifier were
trained, after which the models were evaluated on test sets. Compared to
their counterpart using XGBoost, the shot model using logistic regression
performed better in terms of accuracy (0.71) and area under the ROC-
curve (AUC) (0.78). The larger AUC implies that the classifier is more
capable of distinguishing between the classes (goals and not goals/misses).
Taking into account the surrounding players of the field did not improve
the performance of the shot models, which can be explained mainly by
the fact that the data sets used were too small for training the models
properly and the fact that the positions of all the players deviates from
the real positions of the players due to the time delay of the observers
manually keeping track of the positions of the players. In contrast to
the shot models, the corner models using XGBoost performed slightly
better than their counterpart using logistic regression. The AUC for the
model predicting shots from corner was 0.63 using XGBoost. For the
model predicting goals from corners, the AUC was 0.62 using XGBoost.
The XGBoost decision tree helped to answer the question "What makes
a successful corner?’. Last but not least, a scout report describing the
corners of each team was developed to give further insights and possible
advantages against the opposing teams.
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1 Introduction

Machine Learning (ML) is the study of patterns and statistical methods which
are used to perform tasks without predetermined outcomes. Using software and
algorithms Machine Learning is usually considered as a sub-field of Artificial
intelligence. As the popularity of artificial intelligence methods seem to be on
a steady rise due to the fact that the methods are key to understanding what
it means to predict future returns and their impacts, betting/lottery companies
are considering these methods to a larger extent. This has created a whole field
of business opportunities which are eyeopening to coaches and others whom are
interested in the cross section between how sports analysis is becoming more
and more data driven at its core. The coaches can use classification models as
a basis to formulate successful strategies to ultimately win matches.[1]

Twelve company is an IT-consultancy which specialises in football analysis,
and are now providing the service for many football clubs to model the quality
of play in football. They have provided us with event data of the last three
seasons in Allsvenskan, which is the top level of the Swedish football league
system. In our case, Hammarby IF, also known by the nickname ”Bajen” and
notoriously known for their enthusiastic fans, is the main partner in the quest
for a deeper understanding of football.

In modern football the importance of set pieces are becoming more and
more understood, as a way to score. The amount of effort going into developing
strategies for free kick situations, corners of various forms, etc., seems to be
paying off. Therefore, most professional football teams are putting more and
more training into their corner-tactics. The lesson from this is that football
teams that are good in understanding set pieces will probably have advantage
in today’s modern football. In this project we studied both shots and corners
as means of scoring goals.

The first aim of the project is to create models using logistic regression and
Xgboost, respectively, evaluating the probability of a shot from a particular
location on the football pitch becoming a goal and based on the prediction clas-
sifies the shot as either goal or miss. In order to classify a particular shot a
classification model is built based on the training data set which was extracted
from raw data of match events in Allsvenskan. The events describe the action
and position of the player currently in possession of the ball, and hence the
models did not, at first, account for the positions of the other 21 players. Later,
tracking data of all the positions of players during the match in Allsvenskan
were used to improve the performance of the models.

The second aim of the project is similar to the first one, but models are now
created for corner situations to determine the combination of features more
likely leading to goals via shots. A sub-goal is to generate actionable intelli-
gence regarding the opponents tactics on corner kicks. This information could
be used by the defending team to help stop the attacking team from scoring
from a corner situation. This is also referred to as the scout report.

The models of the type studied in this project are sometimes referred to



as Fxpected goals models, or xG, namely they give the probability of a certain
phenomenon in football (free kicks, penalties, corners, shots during open play,
etc.) to result in a goal. The model can for example take the distance to the
goal and the shot angle, and convert it to a number between 0 and 1, which can
be interpreted as the probability of scoring. Having a probability of 1 indicates
that scoring is most certainly the case, while a probability of 0 is a guaranteed
failure of scoring.

The remainder of this report is organised as follows. In Section 2, the under-
lying theory and the methods used to train the models are explained, including
an in dept description of the pre-processing actions. Section 3 provides the re-
sults which are discussed and compared to each other as well as other models
out there. Finally, Section 4 concludes the report.

2 Theory and Method

Firstly, the structure and content of the event data is examined. Secondly, we
provide a description of the data pre-processing. The resulting pre-processed
data is then used to train the models using logistic regression and Xgboost,
respectively, both of which are explained in dept. Other relevant theory to the
project are explained as well.

2.1 The event data

As mentioned in the introduction, the training data used to learn the models
were extracted from raw data of match events (passes, shots, etc.) in Allsven-
skan, from the past three seasons (2017-2019). The event data consist of various
information about the events. The files containing the data are the so called
json-files. The format of these files is complex, consisting of groups of dictionar-
ies inside lists and groups of lists are in turn enclosed by outer lists (see Figure
1). Each dictionary contains information about one certain event. The details
of the events are referenced by numbers known here as OPTA qualifiers [7].
Furthermore, the qualifiers are divided into groups associated to specific ”event
types”. The first column of a dictionary containing information about an event
is an event 1D, followed by the event type I.D., the outcome (true or false), the
minutes and seconds played, the team ID, the player 1.D., a time stamp and
then a list of different qualifier I.D.s and their respective value grouped together
in directories (see Figure 1). Finally, the x- and y-coordinates are specified and
a mention of the event is given.



Figure 1: Small piece of the event data in a json-file.

Each list of events in the event data is equivalent to linked and coordinated
movements of players in what is called Possession Chains. A Possession Chain
is a chain of events where the ball is moving between players of the same team.
The chain is broken when the team either scores or loses the possession of the
ball, i.e. the opposing team has been in contact with the ball twice, from which
a new chain of events starts taking place. This creates series of patterns looked
into in the creation of the corner models.

2.1.1 OPTA qualifiers

OPTA is one of the top companies handling sports data. The company pro-
vides the tracking data as well as the labels for the data used throughout this
project. A possession chain consists of events, where each event is an action on
the pitch. Examples of events are pass, shot, tackle and goal. To distinguish
even further, the events themselves consists of qualifiers which further describes
the event (e.g. ”long ball”, "free-kick”, "Head pass”, etc.). The most impor-
tant events for this project are shots and passes (passes only of interest for the
corner models). The relevant qualifiers are Regular play and Big Chance (for
shot models), and Corner taken, In-swinger, Out-swinger, Length, Angle, Pass
End X and Pass End Y (for corner models) [7].

These qualifiers are meaningful to investigate as input parameters to the
models, except for Regular play and Corner taken, which do not serve as input
parameters but rather are qualifiers describing the events from which the other
qualifiers are to be extracted. For instance, Big Chance is a qualifier describing
shots deemed by Opta analysts to be excellent opportunities to score (clear cut
chances, e.g. one-on-one). This qualifier is expected to influence the prediction
of the shot models. Other types of qualifiers, such as Right footed, may instead
be redundant qualifiers having no or small impact on the predictions. The
qualifiers used for the corner models are looked at in a similar manner.

2.1.2 Twelve Analysis Tool

The project was in collaboration with the company Twelve Football, which pro-
vided us with the event data. The company specialises in measured performance
in football, which is possible thanks to their team of engineers and developers



whom all are working coordinated to fulfil the main goal of providing leveraged,
scientifically based strategies and/or evaluations for their clients. Furthermore,
Twelve has developed a website and a phone application containing their tools,
which are, among other things, used to investigate a certain player. Figure 1
shows a visualisation of a football analysis tool developed by Twelve.[6]
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Figure 2: A demonstration of what the Twelve football analysis tool could look
like. The points and their colours represent positions and significance.

2.1.3 Pitch map

The plots depicting a football pitch were done using the pitch map code made
available by FCPython [2].

2.2 Data pre-processing

In order to train the models properly the raw data had to be pre-processed to
produce the final training set, which forms a better set to train the models,
excluding irrelevant or insignificant information of the events for the purpose
of creating models predicting goals from shots/corners. This type of excess
information would otherwise either not influence predictions of future shots or
lead to bad future predictions of goals.

2.2.1 Shots

One of the main properties determining the likeliness of a shot being a goal
is the location from which the shot was taken. The x- and y-coordinates of
the shots are hence extracted from the events data. The shots of interest are
only the ones occurring during open play as opposed to from a set play. This
is because set plays, such as free kicks and penalties, are undesirable types of
shots to include into the models, since these occur under different conditions.
A penalty, for instance, is far more likely to result in a goal than an arbitrary
shot from the same distance during regular play under pressure from attacking



opponents. In the implementation, the events initially looked at were the ones
having event type I.D.s 13-16 (associated with shots), and from these events
the x- and y-coordinates were extracted only for those including the qualifier
Regular play in the list of qualifiers associated with the event.

To verify that only the coordinates associated with shots were extracted (i.e.
excluding passes, free kicks, etc.), the extracted data were plotted for one match
and one team (Figure 3).

BK Hacken vs IFK Norrkoping
BK Hacken shots

Figure 3: All shots of team BK Hécken during one match.

Now that the locations of the relevant shots have been collected and verified,
the distance to the goal (origin at the midpoint of the goal) and the angle be-
tween the two goal posts (Figure 4) was calculated. The calculated angles and
distances will then, among others, serve as input parameters to the model, i.e.
part of the final training set. The distances were easily calculated using the for-
mula for Euclidean distances, while the angle was calculated using trigonometric

¢

Figure 4: Illustration of the angle associated with probability of scoring. The
larger the angle, the better chance of scoring.




When considering only the distance and the angle as factors of the probabil-
ity of scoring, a fitted model of the probability distribution over the area close
to the goal would somehow mimic the one shown in Figure 5, where the more
red the colour, the higher the frequency of goals per shot from that particular
position on the pitch.

Frequency of goals per shot

404

404
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Figure 5: Probability of scoring goals from different positions around the box
taking into account both the angle between the goal posts and distance to the
centre of the goal.

The frequency of goals does not follow a perfect circle but rather a more
squashed out circle. Though, if only the angle were considered, the red region
would be circular, but since distance is taken into account the frequency of scor-
ing from a bit wider out at larger distances is still relatively high [5].

Beside distance and angle, the final training set used as input data to the
models contained the parameters distance squared, angle times distance, angle
squared, as well as big chance. The later is, as mentioned, a shot qualifier and
was extracted due to its remarkable impact in the prediction of goals, as opposed
to other shot qualifiers which are not expected to influence the prediction to a
similar extent. The total training set, i.e. the pre-processed data, can be seen
in Figure 6.
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Figure 6: Pre-processed raw data, i.e. the training data.

2.2.2 Shots, using tracking data

The tracking data included the position of all players in a match, and the po-
sitions were recorded every 40ms. The position and time are, hence, the only
information in this data. By using this data set we can find some useful infor-
mation about the shot, e.g. the probability of scoring depending on whether
the player shooting encounters defending opponents or not.

However, since the tracking data was collected by a different company than
the one providing the event data, it was rather difficult to link the event data
and tracking data together. The player ID in tracking data and event data
were entirely different, and the only way to locate each shot in tracking data is
through time. Thus, the time of the shots was used to link them and we found
the result to be extremely noisy, i.e. the shot position from event data and
position from tracking data are too distant from each other. The reason for this
is simple; the sampling frequency in the tracking data not the same through
the match, i.e. not always equal to 40ms, and since there are at least 135,000
frames in the tracking data, small time deviations may accumulate and cause
great errors in positions of the players (due to the time delay) towards the end
of the match. The task was therefore to figure out a way to remove this noise
by first finding the player taking the shot, noting the time ¢ in the event data
and compare it to the time in the tracking data.

As already mentioned, the name of each player is not always the same in
the two data set. A matching algorithm was therefore used to find the most
matches having the most matching names. Then, using the time range —4s +t
to 4s + t we searched in the event data for the closest position of the player to
the one in the tracking data, within the specified time range. This procedure
avoided finding noise points outside this time frame. The result was only used
in the case where the position difference is within 5 meters. One example is
given in Figure 7,



190625_AIK-NOR

Figure 7: Position of each player(i).

)

and another one is shown in Figure 8.

190625_AIK-NOR

Figure 8: Position of each player(ii).

After finishing the searching process described above, a total of 3485 avail-
able results were found, from which data were extracted. From the data the
number of opponents inside the shooting range, given by the angle between the
two goal posts (Figure 9), were found and put into a vector. Also, the distance
between the player taking the shot and the nearest opponent were found and
put into a second vector. These two features may influence the performance of
the model and were hence added to the training data of the shot model created
without accounting for the tracking data (shown in Figure 6).
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Figure 9: 7 opponents inside
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2.2.3 Corners

One of the project goals was to utilise data analysis to investigate what makes
a successful corner. In the data set, a corner is recorded as an event for the
attacking team.

To avoid the accidental use of irrelevant events, only the possession chains
containing a corner was extracted from the raw data. Furthermore, only events
in that possession chain which took place after the corner kick were used in the
analysis. The qualifiers of the corner kick event were saved, and if a shot or a
goal was present in the following events, the corner data was labelled accord-
ingly. In total, there were 7213 corner events, out of which 1810 corners lead to
a shot and 151 corners lead to a goal.

One assumption made was that the corner qualities relevant for predicting
shots and goals were distance, angle, swing type and angle squared.

An in-swinger is a corner taken such that the ball trajectory curls inwards
towards the goal when entering the penalty box. On the other hand an out-
swinger is a corner taken such that the ball trajectory curls away from the goal.
A straight corner has no curl and a short corner is a pass which doesn’t land in
the penalty area.

The categorical values in-swinger, out-swinger, straight and short were trans-
formed to one-hot-encoded values, see Table 1. This was done because the classi-
fication model needs the inputs to be numerical. The choice of one hot encoding
over integer encoding ensures that the classifier does not rank the categorical
values and assign higher importance to one of them because they happened to
be encoded with an integer with higher value.

Table 1: One hot encoding of the swing type

Corner # | In-swinger | Out-swinger | Straight | Short
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

11



Inswing Straight

Outswing Short

Figure 10: A graphical description of the different values of the corner qualifier
swing type. The red line represents the ball trajectory. The blue curve indicates
the angle of the trajectory. The red dot is the destination point of the ball.

The original x-coordinate, original y-coordinate and original angle (in de-
grees) were denoted as x, y and 6.

The second step was to project the coordinates from the range [0 — 100] to
be able to plot them on a pitch map. The pitch length was chosen to 130 m
and the pitch width to 90 m. The coordinates were transformed as

130x
!

— 1
100" (1)
90y

!
Y= 100 (2)

As it turns out, the distance and angle qualifiers in the data set were not
directly applicable to the real world. This lead to the choice of using the x- and
y-coordinates to compute both the distance and the angle.

The attacking direction in the data was supposed to always be from left
to right, regardless of which team it was. A known error in the raw data was
that sometimes the x-coordinates were flipped. One example was that a corner
kick event had coordinates in the bottom left corner, but the corner destination
coordinates were in the penalty area on the right hand side of the pitch. This
could lead to massive computational errors for the distances and angles. To
correct this, all event coordinates with an x-coordinate of less than half of the
pitch length were mirrored across the middle line of the pitch. The distances d
were computed as

d=1/( -0 + (v - )", (3)

12



where x¢ and yg are the coordinates of the corner kick. The angles 6 were
computed as

6 = 90° — arctan (y — yo) / (z — o), (4)

where x and y are the coordinates of the corner destination point. The shift of
90° was done because the angle was defined w.r.t. the goal line as in figure 10.

2.2.4 Data Set Balancing and the confusion matrix

From the training data it became obvious that we were dealing with an imbal-
anced data distribution. The number of instances were the goal event is labelled
'1” is much smaller than those labelled ’0’ (most shots do not result in goals and
even fewer corners lead to goals). This is problematic using the usual machine
learning methods since these tend to be biased towards the majority class (ig-
noring the minority class) by assigning almost all new data point to the majority
class in an attempt at increasing accuracy and will have major misclassification
of the minority class (compared to the majority class). In order to use the
machine learning methods for this project (logsitic regression and XGBoost) an
explicit algorithm handling the imbalanced class distribution would have to be
applied to the models [3].

The algorithm used to create a balanced training set was the Synthetic Mi-
nority Over-sampling Technique (SMOTE), which over-samples the minority
class instances and makes them equal in number to the majority class by repli-
cating them. The virtual training records are generated by linear interpolation
for the minority class and by randomly selecting the k-nearest neighbours (one
or more) for each instance in the minority class. The new training data set was
now fit for machine learning [3].

To obtain a more comprehensive view of the classifications, one can plot
the confusion matrix for the training data. The confusion matrix displays the
actual labels versus the predicted labels (Table 3). The recall, which is the
fraction of the actual goals truly predicted as such [9], is expected to increase
for the minority class (’1’), as the data becomes balanced. On the other hand, a
decrease in accuracy (the fraction of predictions the model predicted correctly)
is expected, due to the fact that the classifier no longer assigns most of the test
data points to the dominating majority class.

Table 2: Confusion matrix consisting of the number of records being true posi-
tives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

Predicted label

y=0 y=1
True | y =0 | TN FP
label | y =1 | FN TP

In mathematical terms, the recall is hence given by

TP
l=———.
Reca TPLFN (5)
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2.3 Corner models

The corner models were made in two steps. The first model tries to predict
if a given corner leads to a shot or not. The second model tries to predict
if a corner that leads to a shot also leads to a goal. For the corner models,
LogisticRegressionCV [4] with the ’lbgfs’ solver, 12’ penalty and 10-fold cross
validation was used.

2.3.1 Shots from corners

The first model calculates the probability of a shot given the corner qualities,
or in mathematical terms:

P (shot | corner qualities),

where shot is a binary variable (0/1).

2.3.2 Goals from shots

The second model calculates the probability of a goal given a shot and the corner
qualities, or in mathematical terms:

P (goal | shot = 1, corner qualities) ,

where goal is a binary variable (0/1).

2.4 Training a classifier

To train a supervised machine learning classifier, one must have access to a
large labelled data set. The goal is to tune the parameters of the model to
minimise some chosen error metric. The data set is split into a training set and
a test set, where the test set usually is much smaller. The model learns from
the training set and is evaluated on the test set. A perfect performance on the
training but poor performance on the test set set is often caused by overfitting.
To avoid overfitting, there are several regularisation techniques available which
will improve the performance on the test set.

One example used was k-fold cross validation. It splits the training set into
k subsets, and uses k-1 of those for training and one for validation. The training
is then iterated k times to ensure each subset has been used as the validation set.

Another regularisation technique used was 12’ penalty, which adds a penalty
for large coefficients to the cost function being minimised.

2.5 Logistic regression

To solve binary classification problems, one of the classical machine learning
methods out there is the Logistic regression, which models a dependant vari-
able (goal/miss) in terms of independent variables corresponding to the features
in the training data set. It is part of the supervised learning family, meaning
that it learns from labelled training data. Hopefully, the model will be good

14



enough to generalise and correctly predict the true class of the new unseen data.

Logistic regression gives the probability of the unseen data belonging to class
'0’/’1. Tt uses the idea behind linear regression

p(X) = 60 +61X1 + ...+ Bpo,

which inserted in the logistic function, modelling the probabilities describing
the possible outcomes (goals/miss) [4], yields

ebotB1Xi+.. . +8pXp
p(X) = 1 _|_ 660+/61X1+~--+ﬂpxp !

to guarantee an output always lying between 0 and 1, for any given input
matrix X. Here, X consists of p features, corresponding to the features of the
training data.

In order to implement a logistic regression model in Python the library scikit-
learn was imported, where the method LogisticRegression() can be applied to
estimate the coefficients By, 51, ..., Bp by finding the coeflicient vector 8 and
constant ¢ that minimises the expression within brackets [4]:

i (im +C Y logleap(—yi(XT B + o) + 1>>

=1

2.6 XGBoost

XGBoost is an algorithm for classification that is currently dominating the field
of applied machine learning. It is an open-source software library providing
gradient boosted framework for Python and is an implementation of gradient
boosted decision trees, i.e. it produces a prediction model in the form of an
ensemble of weak prediction models of decision trees [10]. Mathematically it is
more complicated, but can be explained briefly: setting the mean square error
(MSE) as the loss function and calculating the derivative of the loss function,
one can prove that the residual r;,, equals minus gradient. In other words,
adding one more tree to fit the residual it will be going towards the minus
gradient direction. The procedure of the algorithm (Fig.11) can be described
as follow: calculate the residual r;,, of the current model, add another tree into
the model to fit the error and update the model. Iterate until the number of
trees reach the limit (a hyperparameter).

15



for D = {(z;,y:)}, and loss function L

n
Initialize Fy = argmin Z L(yi,7)
SR

For m:=1+ M do
1. Compute gradient w.r.t Fp—, (2;)
|:8£(yi) -7:m71 (LL‘@)) } .
Tim = — )2
OF 1 (z;)
2. Fit C&RT decision tree hy, () to {(xi, rim) }74
3. Compute multiplier ~,,

n
Ym = argmiﬂzﬁ(yi,fm—l (@) + v b ()
T =1
4. Update the model
Fmn=Fm1+Ym- b
end
return Fus

:1’...",1,

Figure 11: Algorithmic procedure of XGBoost.

This greedy algorithm is used to search for a best splitting point. Thus the
searching procedure is expected to be time-consuming and reach local optimal
point instead of global optimal point.

2.7 ROC-curve and AUC

One way to evaluate the performance of the model is by the ROC-curve, or
more accurately, the area under the ROC-curve (AUC). The ROC-curve plots
the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings, where the TRP is equivalent to the recall in Eq. (4) and the
FPR is given by

FP
~ FP+TN’ (6)
Equation (2) is equivalent to the fraction of the actual misses/non-goals

truly predicted as such [9]. An example of a ROC curve is shown in Figure 12
(retrieved from the Results section).

FPR
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Receiver operating characteristic
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True Positive Rate

= LR ROC curve (AUC = 0.78)
XGBoost ROC curve (AUC = 0.76)

04 06 0.8 10
False Positive Rate

Figure 12: A ROC curve plotting the true positive rate versus the false positive
rate at various threshold settings.

The AUC is equal to the probability that the classifier ranks a randomly
chosen goal instance higher than a randomly chosen non-goal instance and for
that reason frequently used for model comparison. An AUC of 0.5, yielded from
the ROC curve represented by a diagonal dashed line in Figure 11, is equivalent
to random guessing (uninformative classifier), while the AUC for an ideal clas-
sifier is equal to one. Most classifiers have AUCs laying somewhere in between,
as will be seen in the Results.[8]

2.8 Scout report

To assemble the scout report, the corner events needed to be associated with the
corresponding team. The aim was to be able to provide a simple yet non-trivial
overview of the teams in Allsvenskan and their corner kicks. To compensate for
the fact that some teams are relegated from and promoted to Allsvenskan after
each season, some of the team statistics were normalised with respect to the
actual number of games present in the data.

3 Results and discussion

In this sections some results from the implementation of the trained models can
be seen, both in terms of accuracy and in the form of ROC curves with corre-
sponding AUCs. The results are discussed further and comparisons are made
between the shot models with and without tracking data, and the corner mod-
els. A comparison between the performance of logistic regression and XGBoost
was done as well.

3.1 Shots

After implementing the SMOTE algorithm described in section 2.2.4 to the
models the increase in recall became obvious (Table 3). For instance, for the
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model using logistic regression the value of the recall ten-folded, i.e. going from
mere 0.07 before the balancing of the training data to about 0.70 after SMOTE
was applied. On the other hand, the accuracy has, as expected, decreased to
reasonable values; 0.71 for logistic regression and 0.70 for XGBoost.

Table 3: Obtained results for recall and accuracy, before and after oversam-
pling for recall and accuracy, respectively, when using logistic regression and
XGBoost, respectively.

Instances of ’1’/°0’  Recall for ’'1’  Accuracy

After (before) oversampling
using Logistic regression 14363 (1592) /14363  0.70 (0.07)  0.71 (0.89)

After (before) oversampling
using XGBoost 8422 (963) /8422 0.67 (0.14)  0.70 (0.91)

The results from Table 4 suggests that logistic regression is slightly superior
to XGBoost in terms of accuracy, i.e. out of the total number of predictions of
the test data logistic regressions will have a larger percentage of truly predicted
records. Furthermore, the AUC is seen in Figure 13 to be larger for logistic
regression by 0.02, having an AUC of 0.78 compared to 0.76 for XGBoost.

Receiver operating characteristic

10

True Positive Rate

= LR ROC curve (&UC = 0.78)
XGBoost ROC curve [AUC = 0.76)

04 06 0.8 10
False Positive Rate

Figure 13: The ROC curves for the shot models (without using tracking data)
using logistic regression and XGBoost, respectively, where the true positive rate
has been plotted against the false positive rate at various threshold settings.
The AUC for logsitic regression is 0.78 and for XGBoost it is 0.76.

The AUCs retrieved from Figure 13 suggests that logistic regression is more
capable of distinguishing between the classes. Overall, logistic regression seems
to perform better than XGBoost for this model of predicting goals from shots
excluding the tracking data due to the higher AUC value.

Compared to other models its performance in terms of AUC is among the
worst (Figure 14).
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Model RMSE McFadden AUC

DeadSpin 0.301 0 0.5
Conversion Ratio 0.291 0.04 0.558
Standard 0.273 0.17 0.787
Stacked Equations 0.273 ? 0.787
Big Chance Only 0.271 0.18 0.725
Standard + Big Chance 0.264 0.22 0.807
Martin Eastwood SVM 0.269 ? ?
Perfect 0 1 1

Figure 14: AUC of all models

Unfortunately, due to the relatively small data set, the tracking data could
not improve the value of the AUC (Figl5).

1.0 4
0.8
2
2 e
w 0.6 —— XGBoost ROC curve (AUC = 0.746)
ZE —— XGBoost ROC curve (AUC = 0.747)
g — XGBoost ROC curve (AUC = 0.745)
g 0.4 P XGBoost ROC curve (AUC = 0.747)
= ,,' ——— XGBoost ROC curve (AUC = 0.746)
—— XGBoost ROC curve (AUC = 0.747)
—— XGBoost ROC curve (AUC = 0.746)
027 —— XGBoost ROC curve (AUC = 0.748)
XGBoost ROC curve (AUC = 0.747)
e ——— XGBoost ROC curve (AUC = 0.748)
0.0 T T

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 15: Several ROC curves corresponding to different simulations for the
shot models using tracking data for XGBoost, where the true positive rate has
been plotted against the false positive rate at various threshold settings. The
average AUC is about 0.75.

The result from 15 is not surprising due to the fact that the event data only
contained 540 matches for all three seasons, and the tracking data was for 174
matches only. Such small data size may not be sufficient for training a model
with good generalisation ability. Furthermore, since the position of shots in
event data were obtained by observers tapping on an iPad, the error is, to say
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the least, considerable. The positions of the players in the tracking data is ex-
pected to deviate from the real positions of the players when the shot is taken
according to the event data. For instance, a player may pass a position twice
or even more during the time error between the two data sets, which makes
it difficult to identify the true positions of the players. Even worse is the fact
that the time error adds up during the matches, making it larger and larger for
every shot instance (e.g. the total time error of the match AIK vs NORR is 45
seconds).

3.2 Corner models

The ROC-curve for the corner model predicting shots can be seen in Figure 17.
In Figure 16a, one sees that the accuracy before using SMOTE is higher than
it is afterwards for the Logistic Regression model and XGBoost model. This is
due to the fact that the models classifies all test data as miss. The oversampling
reduces the accuracy but increases the recall for shots. The performance of both
LR and XGBoost are very similar.

The ROC-curve for the model predicting goals can be seen in Figure 18. In
figure 16b, one sees that the increase in recall for goal is payed for by a decrease
in accuracy. An important observation to make is that for the goal predictions,
XGBoost has a higher accuracy than LR.

The XGBoost decision tree gives an insight of what makes a successful cor-
ner. The average number of shots per corner for the whole data set is 0.251. The
average number of goals per corner and shot for the whole data set is 0.0834. In
Figure 19 and Figure 20, decision trees for the two models are shown. Leaves
number 5, 6 and 8 in Figure 19 gives the conditions under which the shots per
corner ratio is higher than the average ratio. In Figure 20, leaves number 1, 3
and 6 gives the conditions under which the ’goals per corner and shot’ ratio is
almost twice the average ratio.

3.3 Scout report

Figures 21-25 show different statistics from the event data. The teams have four
to six corners per game, but only about 20-30% of them leads to a shot. The best
teams at scoring goals from corners are Djurgardens IF and IFK Norrkoping.
Their goals per corner number is about 50% higher than the average of all the
teams. A surprising insight regarding Helsingborgs IF: they have the highest
goals per shot number, but the worst shots per corner number and corners per
game number.

Figures 21-24 show the corner statistics for all teams who played in Allsven-
skan during at least one of the seasons 2017, 2018 and 2019. Breaking it down
to look at individual teams, the visualisation can look like Figure 25. The pie
charts at Figure 25a shows the same data as figures 22-24, but in a different
way. Figure 25b shows all of Hammarby IF’s corner kicks, grouped by swing
type. Out-swingers and in-swingers are the most common types of corner kicks.
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Recall for '1’ Accuracy Number of '1'/'0"

0.56 (0.00) 0.61 (0.75) 3784 (1265) /

After (before)
3784

oversampling for
Logistic regression

After (before) 0.51 (0.01) 0.62 (0.76) 3788 (1261) /
oversampling for 3788
XGBoost

(a) Table of the recall, accuracy and number of elements in each class for the shot prediction
model. The first row shows the result using Logistic Regression. The second row shows the

result using XGBoost.

Recall for *1’ Accuracy Number of '1'/'0"
After (before) 0.64 (0.00) 0.62 (0.91) 1160 (107) /
oversampling for 1160
Logistic regression
After (before) 0.35 (0.00) 0.72 (0.89) 1176 (91) /
oversampling for 1176
XGBoost

(b) Table of the recall, accuracy and number of elements in each class for the goal prediction
model. The first row shows the result using Logistic Regression. The second row shows the

result using XGBoost.

Figure 16: Tables describing the two corner models: the shot prediction model
and the goal prediction model. After oversampling, the recall for '1’ is increased
and the accuracy is decreased for both LR and XGBoost.
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Corner model: all corners, predict shots
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(a) The ROC curve for the corner
The average AUC is about 0.61.
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Corner model: all corners, predict shots
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— XGBoost (AUC = 0.63)
—— XGBoost (AUC = 0.65)
—— XGBoost (AUC = 0.65)
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(b) The ROC curve for the corner shot model using XGBoost. The average
AUC is about 0.63.

Figure 17: ROC curves for the corner shot model.
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Corner model: corners leading to a shot, predicting goal Carner model: corners leading to a shot, predicting goal

na na

Logistic regression (AUC = 0.60) XGBoost (AUC = 0.63)

m Logistic regression (AUC = 0.66) m - —— XGBoost (ALC = 0.60)
Logistic regression (AUC = 0.62) = XGBoost (AUC = 0.61)
E Logistic regression (AUC = 0.62) o —— XGBoost (AUC = 0.67)
Logistic regression (AUC = 0.52) —— XGBoost (AUC = 0.67)
Logistic regression (AUC = 0.55) —— XGBoost (AUC = 0.60)
. Logistic regression (AUC = 0.65) ' XGBoost (AUC = 0.59)
Logistic regression (AUC = 0.61) —— XGBoost (AUC = 0.65)
Logistic regression (AUC = 0.63) —— XGBoost (AUC = 0.63)
Logistic regression (AUC = 0.64) . —— XGBoost (ALIC = 0.58)
ﬂﬂﬂb az o4 [T 1 [:1.] 10 [ 1] [=F] o4 os (1.3 10
FPR FPR
(a) The ROC curve for the corner goal model using logistic regression. (b) The ROC curve for the corner goal model using XGBoost. The average
The average AUC is about 0.61 AUC is about 0.62.

Figure 18: ROC curves for the corner goal model.
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In-swing<0.00252593495

yes, missing

Angle<10.3558788
no

Out-swing<0.000900523562

Figure 19: Decision tree for the corner model predicting shots. Leaves number 5, 6 and 8 represent subsets of the data set where the shot

per corner is higher than the average of the whole data set.

yes, missing

Angle<5.93776464 no

yes, missing

yes, missing
no

o yes, missing
es, missing Angle<17.5276184 no

no

Out-swing<0.999202728 es. missing

no

leaf=0.237500012

leaf=0.115200005

leaf=-0.296969712

leaf=0.0866925716

leaf=0.0293706302

leaf=-0.0327227339

leaf=-0.298956513

leaf=-0.0191850588
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In-swing<0.000183671873

yes, missing

no

Angle<16.5674896

In-swing<0.998145103

yes, missing

no

es, missing

no

Angle<7.37929821

Angle<17.2051201

leaf=-0.298500001

Distance<49.8968811

yes, missing

no
es, missing

no

es, missing

no

leaf=-0.0100000007

leaf=0.213333353

leaf=0.126789838

leaf=-0.0659919083

leaf=0.177108437

Figure 20: Decision tree for the corner model predicting goals. Leaves number 1,3, and 6 represent subsets of the data set where the goals
per corner is higher than the average of the whole data set.
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Hammarby IF Hammarby IF Hammarby IF
Shots per corner Goals per shot Goals per corner

Mo shot
Mo goal
No goal
B Goals
Goals
Shots

(a) Pie chart showing the fractions of shots per corner, goals per shot and goals per corner
for Hammarby IF. The actual numbers are 473 corners, 123 shots and 11 goals.

Hammarby IF
200

175
150

100

Number of corners

o i & O

In-swing Out-swing Straight Short
Swing of corner kick

(b) Number of corners for Hammarby IF, grouped by swing type.

Figure 25: More detailed corner statistics about Hammarby IF.

4 Conclusions

Out of the classifiers used for the shot models, Logistic Regression seemed to
be best suited to distinguish between goals and misses due to a larger AUC.
Using tracking data did unfortunately not improve the performance of the shot
models, which can be explained through various factors, where the main ones
being insufficient size of the data sets for training the models with good enough
generalisation ability and the fact that the positions in the tracking data de-
viates from the real positions of the players when the shot is taken because of
the time delay of the observers manually keeping track of the positions of the
players. To improve the shot model more features given by the OPTA qualifiers
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can be taken into consideration under the premise that a larger, good quality
tracking data set is used.

The corner models tell a different story. For both predicting shot and pre-
dicting goals, XGBoost performed a little better than Logistic Regression. The
decision trees from XGBoost made it possible to give an answer to the question
"What makes a successful corner?’ asked in the introduction. As a potential
aid to the coaches of Allsvenskan, the scout report has some interesting data
about the other teams. It is easy to see how well each teams performs at taking
corners, and also compare the teams with each other. With all the data already
available, the possibility to add more custom visualisations is enormous.
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