
Institutionen fr informationsteknologi

Data-driven modeling of avascular
tumors

Fredrik Gustafsson, Fredrik Jonasson, Oscar Larsson

Project in Computational Science: Report

February 2020

P
R
O
J
E
C
T
R
E
P
O
R
T



Abstract

In this report we start with a short review of the history of mathematical models for
tumor growth. We then look at three specific models for avascular tumor growth, tumor
growth with deformable ECM [1], the effects of external preassure on tumor growth [2], and
the effects of cell-cell and cell-matrix adhesion [3]. We use the finite element method to solve
the partial differential equations implemented in FEniCS. However due to implementation
problems we are only able to produce results from two of the models, after simplifying them.
The results show that without any adhesive directed growth [3] yields a symmetric tumor
with growing radius and with a fixed tumor size [2] eventually runs out of nutrients and the
mass fraction of necrotic tumor cells increases.
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1 Introduction
Since the mid 20th century scientists have become more aware of the difficulties of treating
cancer [2, 4, 5], and that it requires cooperation between different fields to successfully find new
cures [6]. Based on work done by Greenspan et al. in 1976 [7], mathematical models describing
the basic progression of tumors could be made. Most continuum models, as the three models
investigated herein, focus on the avascular phase [2], which is the state of a tumor before they
have developed their own blood vessels supplying nutrition.

Continuum models for tumor growth are of a reaction-diffusion character including tumor cells,
matrix degrading enzymes, the extracellular matrix, and concentrations of cell substrates e.g.
oxygen and inhibitors [8]. More recent work has also included different ways for locomotion such
as diffusion, haptotaxis or internal pressure. Researchers have also developed models in order to
investigate the relation between the micro environment, e.g. available nutrients or mechanical
stress-factors, and tumor growth. Models investigating the behaviour of the tumor movements
influenced by cell-cell adhesion [9] and cell-matrix adhesion [10] have also been constructed.

Another way to model tumors, compared to reaction-diffusion models, is by treating the system
as a porous solid. One such model ([11],[12]) defines the extracellullar matrix as a solid while
the tumors, living and necrotic, and interstitial fluids are seen as fluids. Such models are refered
to as multiphase flow models and can be useful when studying cancer by considering mass
transportation within the tumor [13].

This project aims at implementing three models, one continuum model [3] and two multiphase
models ([1],[2]), using the finite element method and the FEniCS library, to validate the imple-
mentation by comparing the results with published results.

2 A Brief History of Tumor Modeling
One early model of tumor growth was presented by A.K. Laird in 1964 [4]. There, a model
for tumor size as a function of time was derived from experimental data, fitted to a so called
Gompertz equation. Laird found that the growth of tumors initially started as exponential but
deviated more and more from this, due to retardation, as time increased giving it a non-constant
growth rate, compared to a simple exponential function. Following this model, the growth would
reach an asymptote placing a limit on the growth of the tumor. Furthermore the author argued
that the retardation was due to an increase in mean generation time during the growth. This
was in contrast with the statements of Mayneord who, in 1932, had shown that the retardation
could be explained by the tumors having a necrotic core, decreasing the region of active growth
[5].

Findings in 1972 by Sutherland and Durand [14] found that tumors could stop growing without
the development of a necrotic core. A model, incorporating the findings of [14], was proposed
by D.L.S McElwain and L.E. Morris in 1978 [15]. Their model assumed that the growth would
be affected not only by the formation of a necrotic core but also by apoptosis, i.e. programmed
cell death. Other work on the steady state limit was performed by Folkman and Hochberg [16].
They found that the nutrients eventually are not enough for the tumor to continue growing and
the core of the tumor will start dying. A steady state will arise, where tumor growth at the
border will offset the death at the center of the tumor. The model proposed by Folkman and
Hochberg deals with three-dimensional tumor growth, while applying a differing amount of stress
to the tumor to see how it affects the growth. Some earlier works, where similar experiments
were performed, are the 1971 paper by Sutherland et al. [17], and later on with the inclusion of
mechanical stress, by Helmlinger et al. [18] and Kaufman et al. [19]. Early continuum models of
spherical tumor growth focus primarily on the nutrition diffusion and the biochemical processes
[20]. A later paper by Chaplain et al. in 2006 [21] was among the earliest to reflect these exper-
iments on the effects of external stress on cell proliferation into their mathematical models.
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Further studies on the role of the necrotic core and nutrients and their effect on tumor growth
were performed by Greenspan who published a paper in 1976 [7]. In his model, the growth and
motion of the tumor was due to internal pressure due to birth and death of cells. From his
experiments he came to the conclusion that as the tumor grows it can reach an unsteady state
in which it might split or disintegrate. The argued that The latter could start a sequence of
growth and division thereby overcoming the steady state limit.

While Greenspan focused on the role of nutrients and the necrotic core Glass [22] focused on
chemical inhibitors, in a paper published in 1973 [22]. Glass discussed a simple one dimensional
model incorporating growth inhibitors, so called chalones, a model which he claimed was moti-
vated due to evidence surrounding cellular growth being controlled by negative feedback from
the tissue. The model assumed uniform production of the growth inhibitors and that the growth
was regulated by a switch mechanism, i.e. if the concentration of chalones was below the thresh-
old, growth would occur. The work by Glass was expanded in the 80s by John Adam in a series
of three papers[23, 24, 25]. In the first paper, published in 1986 [23], he found that the growth
was sensitive to non-uniform source terms for the inhibitors. The second paper [24], published
in 1987, focused not only on a non-uniform source term but also on different three-dimensional
geometries, e.g. thin rod, thin disk, and sphere. As in the case of non-uniform source term he
argued that the geometry of the source also affected the growth of tumors. The third paper [25],
published in 1989, in cooperation with S.A. Maggelakis, compared two mathematical models.
These two models deviated from those studied in Adam’s previous papers by modelling the in-
hibitors as a product of other processes. The first model focused on modelling the inhibition as
a product of necrosis while the second model instead assumed that the inhibitors were a product
of living cells metabolic processes.

One of the earliest spatial models for tumor growth was presented in 1996 by Robert A. Gatenby
and Edward T. Gawlinski [26]. They proposed a model based of previous work done by Gatenby
[27, 28]. Rather than fitting data to a Gompertz equation this model was based upon modelling
the tumor-host interaction using population ecology models with limited resources. Further-
more, they considered changes in the surrounding tissues due to released acids, resulting in an
environment unsuitable for healthy cells, while tumor cells survives and proliferates. The model
itself consisted of three coupled reaction-diffusion equations for healthy tissue, tumors and acid.

The effect of haptotaxis on the dynamics between the healthy tissue, tumors and degrading
enzymes was further investigated [29]. In 2000 A.R.A Anderson et al. [30] presented their work on
investigating this dynamic. Their continuum model did not include any cell proliferation. Instead
focusing solely upon the haptotaxic effects. They also extended the model to two dimensions as
well as developing a discrete version of their model.

Anderson continued to investigate the haptotaxic dynamic for tumor cell motion and published a
paper in 2005 [31], where the model was extended to include an equation for the available oxygen.
In the paper Anderson investigates the effect of oxygen and the effect of cell-cell adhesion by
using a hybrid discrete-continuum model and modelled the adhesion as a value which dictated
how many neighbours a cell needed in order to be allowed to migrate.

Another approach for modelling the cell-cell and cell-tissue adhesion was presented in 2008 by
A. Gerisch and M.A.J. Chaplain [32]. Their model was based upon the one presented in 2000 by
Anderson but included a non-local cell-cell and cell-tissue adhesion term instead of the previous
local haptotaxic term, resulting in a continuum model with directed growth from adhesion.

Sciumè et al. presented a new model in 2013 [33]. They derived the governing equations for their
model through thermodynamically constrained averaging theory (TCAT) framework presented
by [34]. TCAT was used to go from microscopic laws to macroscale relationships in order to
extend multiphase porous media mechanics to tumor models. In a subsequent paper published
in 2013, Sciumè et al. [12] further developed the model by introducing constitutive relationship
between pressure differences. What they found was that the tension in the interface between the
different phases led to different growth patterns for the tumor.
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3 Tumor Models
In this section three models for tumor growth are presented. The first paper [1] models tumors at
the macroscopic scale using TCAT to translate relations on the microscopic scale to macroscopic.
The tumors are represented by a multiphase flow model. The second paper, [3], uses a reaction-
diffusion equation with a non-local adhesion directed growth term. The third and last model,
[2], is an extension to [1] and incorporates the influence of external preassure on tumor growth.

3.1 Model 1 (Sciumè)
The tumor growth model by Sciumè [1, 11] consists of three mass balance governing equations
for the tumor cell, the host cell and the interstitial fluid. In the mass balance equations, there
are different phases which include the tumor cell, the host cell, the extracellular matrix (ECM)
and the interstitial fluid. The ECM, the area around the cells and what gives them structure,
constitutes the solid phase while tumor cell, host cell and interstitial fluids constitute the liquid
phases. The governing equations describes the behaviour of the differential pressures, where
u(1) is the differential pressure between the tumor and host cell, u(2) is the differential pressure
between the host cell and the interstitial fluids, and u(3) is the pressure in the interstitial fluids.

In the following equations, (1)-(3), ε denotes the porosity of the ECM from which the volume
fraction occupied by the solid phase can be calculated as εs = 1− ε, S is the saturation degree
of the different fluid phases, tumor cells, host cells, and insterstitial fluids, for phase x the
saturation degree is defined as Sx = εx/ε volume fraction divided by porosity. In this model
there are three fluid phases and St + Sh + Sl = 1. The relation between the three saturation
degrees are as follows, Sl = 1 − [ 2

πarctan(u(2)
a )] and Sh + Sl = St = 1 − [ 2

πarctan( σhlσth

u(1)
a )],

where σij is the interfacial tension between phase i and phase j while a is a constant related to
ε.

The three mass balance equations for the tumor cell are as follows:

[
εSt

KT
+
St(1− ε)
KS

(
St + u(1)Stder

)
+ εStder

]
∂u(1)

∂t

+

[
εSt

KT
+
St(1− ε)
KS

(
1− Sl − u(2)Slder)

)]
∂u(2)

∂t

+

[
εSt

KT
+
St(1− ε)
KS

]
∂u(3)

∂t
(1)

=∇ ·
[
ktrelk

µt
· ∇
(
u(1) + u(2) + u(3)

)]
−St

(
1 : ds

)
−∇St ·

(
εvs
)

+
1

ρt
M l→t,

for the host cell,
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[
Sh(1− ε)

KS

(
St + u(1)Stder

)
− εStder

]
∂u(1)

∂t

+

[
εSh

KH
+
Sh(1− ε)

KS

(
1− Sl − u(2)Slder

)
− εSlder

]
∂u(2)

∂t

+

[
εSh

KH
+
Sh(1− ε)

KS

]
∂u(3)

∂t
(2)

=∇ ·
[
khrelk

µh
· ∇
(
u(2) + u(3)

)]
−Sh

(
1 : ds

)
−∇Sh ·

(
εvs
)
,

for the interstitial fluid, [
εSt

KT
+

1− ε
KS

(
St + u(1)Stder

)]
∂u(1)

∂t

+

[
εSt

KT
+
εSh

KH
+

1− ε
KS

(
1− Sl − u(2)Slder

)]
∂u(2)

∂t

+

(
εSt

KT
+
εSh

KH
+
εSl

KL
+

1− ε
KS

)
∂u(3)

∂t

=∇ ·
[
ktrel ∗ k
µt

· ∇u(1)

]
(3)

+∇ ·
[(

ktrel ∗ k
µt

+
khrel ∗ k
µh

)
· ∇u(2)

]
+∇ ·

[(
ktrel ∗ k
µt

+
khrel ∗ k
µh

+
klrel ∗ k
µl

)
· ∇u(3)

]
−St

(
1 : ds

)
+
ρl − ρt

ρtρl
M l→t.

As mentioned in [1], Kx is the compressibility of phase x, µx is the dynamic viscosity of phase
x, kxrel is the relative permeability for phase x k the intrinsic permeability tensor of the ECM,
ds is the Eulerian rate of strain tensor, vs is the velocity of the solid phase, ρx is the density
of phase x and M l→t is an inter-phase exchange of mass between the interstitial fluid phase and
the phase of the tumor cell. ":" denotes the double dot product, in this case between the rate
of strain tensor and the identity matrix.

To solve (1)-(3)numerically, the finite element method is used. The test space V is defined
by V = {v : ||∇v|| + ||v|| < ∞}, then the equations (1)-(3) are multiplied by v1, v2 and v3

respectively, where v1, v2, v3 ∈ V .

After the multiplication with the test functions we partially integrate each function and get the
following three equations
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∫
Ω

[
εSt

KT
+
St(1− ε)
KS

(
St + u(1)Stder

)
+ εStder

]
∂u(1)

∂t
v1 dx

+

∫
Ω

[
εSt

KT
+
St(1− ε)
KS

(
1− Sl − u(2)Slder)

)]
∂u(2)

∂t
v1 dx

+

∫
Ω

[
εSt

KT
+
St(1− ε)
KS

]
∂u(3)

∂t
v1 dx (4)

= −
∫

Ω

[
ktrelk

µt
· ∇
(
u(1) + u(2) + u(3)

)]
· ∇v1 dx

−
∫

Ω

St
(
1 : ds

)
v1 dx+

∫
Ω

St ·
(
εvs
)
∇v1 dx+

∫
Ω

1

ρt
M l→tv1 dx,

∀v1 ∈ V , where the right hand side can be simplified using integration by parts.

The weak form for (2) becomes∫
Ω

[
Sh(1− ε)

KS

(
St + u(1)Stder

)
− εStder

]
∂u(1)

∂t
v2 dx

+

∫
Ω

[
εSh

KH
+
Sh(1− ε)

KS

(
1− Sl − u(2)Slder

)
− εSlder

]
∂u(2)

∂t
v2 dx

+

∫
Ω

[
εSh

KH
+
Sh(1− ε)

KS

]
∂u(3)

∂t
v2 dx (5)

=

∫
Ω

[
khrelk

µh
· ∇
(
u(2) + u(3)

)]
· ∇v2 dx

−
∫

Ω

Sh
(
1 : ds

)
v2 dx+

∫
Ω

Sh ·
(
εvs
)
· ∇v2 dx,

∀v2 ∈ V , where the right hand side can be simplified using integration by parts.

and for (3) the weak form becomes

∫
Ω

[
εSt

KT
+

1− ε
KS

(
St + u(1)Stder

)]
∂u(1)

∂t
v3 dx

+

∫
Ω

[
εSt

KT
+
εSh

KH
+

1− ε
KS

(
1− Sl − u(2)Slder

)]
∂u(2)

∂t
v3 dx

+

∫
Ω

(
εSt

KT
+
εSh

KH
+
εSl

KL
+

1− ε
KS

)
∂u(3)

∂t
v3 dx

= −
∫

Ω

[
ktrel ∗ k
µt

· ∇u(1)

]
· ∇v3 dx (6)

−
∫

Ω

[(
ktrel ∗ k
µt

+
khrel ∗ k
µh

)
· ∇u(2)

]
· ∇v3 dx

−
∫

Ω

[(
ktrel ∗ k
µt

+
khrel ∗ k
µh

+
klrel ∗ k
µl

)
· ∇u(3)

]
· ∇v3 dx

−
∫

Ω

St
(
1 : ds

)
v3 dx+

∫
Ω

ρl − ρt

ρtρl
M l→tv3 dx,

∀v3 ∈ V , where the right hand side can be simplified using integration by parts.

To discretise the system (4)-(6) in time we use the Euler backward method with timestep ∆t,
i.e. ∂u(x)

∂t is replaced by u(x)n+1
h −u(x)nh

∆t and every other occurence of u(x) is replaced by u(x)n+1
h

where x = 1, 2, 3.
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3.2 Model 2 (Chaplain)
Following the non-local model presented by Chaplain in 2008 [32] and further investigated by
Chaplain in 2014 [3] the governing equations for tumor growth, for one population, are

∂c

∂t
= ∇ · (D1∇c− cA(t, χ,u(t, ·)) + P (t,u)c, (7)

∂v
∂t

= −γmv + ψ(t,u), (8)

∂m

∂t
= ∇ · (D3∇m) + αc− λm, (9)

in which c is the tumor cell concentration, v is the extracellular matrix density and m is the
concentration of matrix degrading enzymes(MDE). Equation (7)-(9) introduce the constants D1

which is the random motility coefficient of the tumor population, γ corresponds to the rate
constant of the degradation of ECM due to MDE, D3 is the diffusion constant of the MDE,
the secretion rate of MDE from the tumor population is modelled by α, and finally λ is the
decay constant for the MDE. Furthermore, u(t, χ) = (c(t, χ)T , v(t, χ))T which is the combined
cell concentration and ECM density vector, ψ(t,u) is the remodelling of the ECM, χ = [x1

x2]T which is the spatial dimension vector, and P (t,u) is the tumor cell proliferation. The non-
local operator A(t, χ, u(t, ·)) representing the velocity of directed cell migration from cell-cell and
cell-matrix adhesion and is defined as

A(t, χ,u(t, ·)) =
1

R

∫
B(0,R)

n(y) · Ω(||y||2)g(t,u(t, x+ y))dy, (10)

where n(y) is the unit vector between point x and x + y and Ω(||y||2) = 3
πR2 (1 −

√
x2+y2

R ) is a
distance dependency function. Finally the term g(t,u(t,x+y)) is defined as g(t,u(t, x + y)) =
(Sccc + Scvv) ∗ (1 − dvv − dcc)+ where Scc and Scv are the cell-cell and cell-matrix adhesion
coefficients, the + sign in the second term is the positive part, i.e., max(0, ·), of the inhibition of
migration from volume filling effects, dvv and dcc are the fractions of the physical space occupied
by v and c respectively. In this case we chose

P (t,u) = µ1(1− dvv− dcc), (11)

which yields a logistic growth with competition for space for the tumor cells. For the three
equations (7)-(9) the following two boundary conditions hold, for t ∈ IT and χ ∈ D

(D1∇c− cA(t, χ,u(t, ·)) · n(χ) = 0, t ∈ IT , χ ∈ ∂D, (12)

(∇m) · n(χ) = 0, t ∈ IT , χ ∈ ∂D, (13)

where n(χ) is the normal vector on ∂D, IT is the time domain and D is the spatial domain.
Finally the initial conditions are as follows, c0(χ), v0(χ) and m0(χ), for numerical values see [3].

To solve the equations, (7)-(9), we will use a finite element method. First we define a test space
V, V = {v : ||∇v||+ ||v|| <∞}, we then multiply the equations, (7)-(9) with test functions, v1,
v2 and v3 respectively, where v1, v2, v3 ∈ V . After the multiplication with the test functions we
partially integrate each function and obtain the following three equations:

∂c

∂t
=

∫
D

(−(D1∇c− cA(t, χ,u(t, ·)) · ∇v1 + P (t,u)cv1)dχ, ∀v1 ∈ V (14)

∂v
∂t

=

∫
D

(−γmvv2 + ψ(t,u)v2)dχ, ∀v2 ∈ V (15)
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∂m

∂t
=

∫
D

(−(D3∇m) · v∇v3 + αcv3 − λmv3)dχ, ∀v3 ∈ V. (16)

To form a variational form we add the three equations together

∂c

∂t
+

∫
D

((D1∇c− cA(t, χ,u(t, ·)) · ∇v1 − P (t,u)cv1) dχ

+
∂v
∂t

+

∫
D

(γmvv2 − ψ(t,u)v2) dχ , ∀v1, v2, v3 ∈ V (17)

+
∂m

∂t
+

∫
D

((D3∇m) · v∇v3 − αcv3 + λmv3)dχ = 0.

Next we let K ={K} be a mesh consisting of regular triangles, K, of D and define Vh ⊂ V as
the space of all continuous piecewise linear functions on K that fulfill the boundary conditions
(12)-(13). This results in the system

∂ch
∂t

+

∫
D

((D1∇ch − chA(t, χ,uh(t, ·)) · ∇v1 − P (t,uh)chv1) dχ

+
∂vh
∂t

+

∫
D

(γmhvhv2 − ψ(t,uh)v2) dχ , ∀v1, v2, v3 ∈ V (18)

+
∂mh

∂t
+

∫
D

((D3∇mh) · ∇v3 − αchv3 + λmhv3)dχ = 0.

where ch, vh,mh ∈ Vh. Finally we discretise the time derivatives in (18) using the backward
Euler method with timestep ∆t. This leads to the final space and time discretised system

cn+1
h − cnh

∆t
v1 +

∫
D

((D1∇cn+1
h − cn+1

h A(t, χ,un+1
h (t, ·)) · ∇v1 − P (t,un+1

h )cn+1
h v1) dχ

+
vn+1
h − vnh

∆t
v2 +

∫
D

(γmn+1
h vn+1

h v2 − ψ(t,un+1
h )v2) dχ ,∀v1, v2, v3 ∈ V (19)

+
mn+1
h −mn

h

∆t
+

∫
D

((D3∇mn+1
h ) · ∇v3 − αcn+1

h v3 + λmn+1
h v3)dχ = 0.

The non-local term is calculated by solving the integral around each node in the two spatial
directions separately by letting the unit normal work in one direction, i.e. each node has two
values Ax and Ay.

3.3 Model 3 (Mascheroni)
The third tumor growth model investigated in this work is presented by Mascheroni et. al in
2016, [2]. The model includes a term for describing any external pressure applied to the tumor
cells during growth, either applied by the surrounding fluid or a mechanical compression of the
cells. This model has three governing equations, one for the tumor volume fraction εs, one for
the mass fraction of necrotic tumor cells ωNt and one for the mass fraction of the nutrition in
the model, oxygen, ωox. The three governing equations are as follows:

∂εs

∂t
− 1

r2

∂

∂r

(
r2εs

k

µl
Σ
′ ∂εs

∂r

)
− 1

ρ

(
l→s
M −

s→l
M

)
= 0, (20)

∂(ωNtεs)

∂t
− 1

r2

∂

∂r

(
r2εsωNt

k

µl
Σ
′ ∂εs

∂r

)
− 1

ρ

(
εsrNt −

s→l
M

)
= 0, (21)

∂ [(1− εs)ωox]

∂t
+

1

r2

∂

∂r

(
r2εsωox

k

µl
Σ
′ ∂εs

∂r

)
− 1

r2

∂

∂r

[
r2(1− εs)Dox ∂ω

ox

∂r

]
+

1

ρ

ox→s
M = 0, (22)
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with boundary conditions:

∂εs

∂r
=
∂ωNt

∂r
=
∂ωox

∂r
= 0, in r = 0, (23)

εs = εsext, ωNt = 0, ωox = ωoxenv, in r = R, (24)

and initial conditions:

εs = εsext, ωNt = 0, ωox = ωoxenv, on 0 < r < R at t = 0. (25)

As the tumor grows and expands, the outer boundary R should also move alongside the boundary
conditions. The velocity of the outer boundary is defined as:

dR

dt
= − k

µl
Σ
′ ∂εs

∂r
. (26)

The equations are expressed in polar coordinates but due to spherical symmetry the equations
only depend on the tumor radius r and can as such be reduced to a one-dimensional problem.

As for the parameters in the equations all three of the terms
l→s
M ,

s→l
M and

ox→s
M are mass transfer

terms that describe the mass exchange between the three phases of the model, where l repre-
sents the interstitial fluid (IF), s is the solid phase consisting of tumor cells and the extracellular
matrix, and ox is the nutrition, oxygen. The term k is the intrinsic permeability of the solid
matrix and µl is the dynamic viscosity which together form the hydraulic permeability k/µl.
The term Σ

′
is the derivative of Σ with respect to εs which is represented by a pseudo-potential

law describing the force between two cells [35]. The densities of both the solid phase s and the
fluid phase l are the same as they are assumed to be incompressible and are represented by ρ
in the equations above. The rate of death of the living tumor cells (LTC) is represented by the
term εsrNt and the term Dox represents the diffusion coefficient of oxygen.

The expression for the pseudo-potential law is as follows:

Σ(εs) =

{
α(εs − εs0)2

[
1−εsn

(1−εs)β −
1

(1−εs)β−1

]
, if εs > εs0

0, otherwise,
(27)

where εs0 and εsn are defined as 1/3 and 0.8 respectively [35]. The rate of death term εsrNt has
the following form:

εsrNt = γsnI(ωox)ωLtεs. (28)

The tumor phase s includes the sub-phases living tumor cells and necrotic tumor cells (NTC)
and as the mass fractions of each phase sum to 1, the following holds: ωLt = 1− ωNt. The rate
of cell death is controlled by γsn, while the function I describes cell death as a result of lack of
oxygen.

The interphase mass exchange terms
l→s
M ,

s→l
M and

ox→s
M are defined as follows:

l→s
M = γsgG(ωox)H(tseff )ωLtεs, (29)

s→l
M = λslω

Ntεs, (30)
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ox→s
M = γs0

ωox

ωox + cox
ωLtεs. (31)

The term accounting for the nutrient consumption of the tumor described in (31) is validated

via experiments performed in 1992 by Casciari et al. [36] whereas the other two terms,
l→s
M and

s→l
M are described by Preziosi and Sciumè amongst others [37, 33]. The tumor phase s consists
of the sub-phases living tumor cells and necrotic tumor cells and as the mass fractions of each
phase sum to 1, the following holds: ωLt = 1 − ωNt. The effective stress tensor tseff is defined
as tseff = −Σ(εs)I as per [2]. The parameter γsg describes the nutrient uptake due to cell growth
that happens when the IF becomes tumor cells. The functions G and H describe effects of
the nutrient level and growth inhibition due to mechanical stress respectively. Cell membrane
degradation for the phase transition between s and l is described by λsl . Finally the terms γs0
and ωoxcrit both describe oxygen uptake, γs0 the uptake order of magnitude, and ωoxcrit the level
where oxygen consumption is halved. The three functions G, H and I were selected from various
earlier works [35, 38, 39, 40, 37, 41, 33]. The function H differs but the form was verified to
better fit this model via experiments [2]. The functions G, H and I have the forms:

G(ωox) =

〈
ωox − ωoxcrit
ωoxenv − ωoxcrit

〉
+

, (32)

H(tseff ) = 1− δ1
〈Σ〉+

〈Σ〉+ + δ2
, (33)

I(ωox) =

〈
ωoxcrit − ωox

ωoxenv − ωoxcrit

〉
+

, (34)

where the angle brackets signify the positive value of the argument.

Similar to the other two models, the governing equations (20), (21) and (22) are implemented
in FEniCS. To formulate the weak form of the governing equations we first determine which are
the variables to solve for, either the mixed terms [εs, ωNtεs, (1 − εs)ωox] or to separate the
terms and solve for [εs, ωNt, ωox]. Here the second option is chosen. Starting with equation
(20), multiply by r2, introduceing a test function v1 and integrate over the domain.

∫ R

0

r2 ∂ε
s

∂t
v1dr −

∫ R

0

∂

∂r

(
r2εs

k

µl
Σ
′ ∂εs

∂r

)
v1dr −

∫ R

0

r2

ρ

(
l→s
M −

s→l
M

)
v1dr = 0. (35)

Using Gauss’ theorem yields:

∫ R

0

r2 ∂ε
s

∂t
v1dr −

∫ R

0

∂

∂r

(
r2εs

k

µl
Σ
′ ∂εs

∂r

)
v1dr (36)

+

∫ R

0

r2εs
k

µl
Σ
′ ∂εs

∂r

∂v1

∂r
dr −

∫ R

0

r2

ρ

(
l→s
M −

s→l
M

)
v1dr = 0. (37)

Applying the boundary conditions listed in (23) and (24) results in the second term being equal
to zero, leaving as the final weak form of the first governing equation:

∫ R

0

r2 ∂ε
s

∂t
v1dr +

∫ R

0

r2εs
k

µl
Σ
′ ∂εs

∂r

∂v1

∂r
dr −

∫ R

0

r2

ρ

(
l→s
M −

s→l
M

)
v1dr = 0. (38)
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Following the same procedure for the other two governing equations results in:

∫ R

0

r2 ∂(ωNtεs)

∂t
v2dr +

∫ R

0

r2εsωNt
k

µl
Σ
′ ∂εs

∂r

∂v2

∂r
dr −

∫ R

0

r2

ρ

(
εsrNt −

s→l
M

)
v2dr = 0, (39)

∫ R

0

r2 ∂[(1− εs)ωox]

∂t
v3dr −

∫ R

0

r2εsωox
k

µl
Σ
′ ∂εs

∂r

∂v3

∂r
dr

+

∫ R

0

r2(1− εs)Dox ∂ω
ox

∂r

∂v3

∂r
dr +

∫ R

0

r2

ρ

ox→s
M v3dr = 0. (40)

We discretize (38)-(40) using linear FEM and the Euler backward method to discretize in time.
The resulting fully discretized system has the form:

∫ R

0

r2 ε
s,n+1
h − εs,nh

∆t
vh,1dr +

∫ R

0

r2εs,n+1
h

k

µl
Σ
′ ∂εs,n+1

h

∂r

∂vh,1
∂r

dr −
∫ R

0

r2

ρ

(
l→s
M −

s→l
M

)
vh,1dr = 0,

(41)

∫ R

0

r2

(
ωNt,n+1
h − ωNt,nh

∆t
εs,n+1
h +

εs,n+1
h − εs,nh

∆t
ωNt,n+1
h

)
vh,2dr

+

∫ R

0

r2εs,n+1
h ωNt,n+1

h

k

µl
Σ
′ ∂εs,n+1

h

∂r

∂vh,2
∂r

dr −
∫ R

0

r2

ρ

(
εs,n+1
h rNt −

s→l
M

)
vh,2dr = 0, (42)

∫ R

0

r2

([
1− εs,n+1

h

] ωox,n+1
h − ωox,nh

∆t
−
εs,n+1
h − εs,nh

∆t
ωox,n+1
h

)
vh,3dr

−
∫ R

0

r2εs,n+1
h ωox,n+1

h

k

µl
Σ
′ ∂εs,n+1

h

∂r

∂vh,3
∂r

dr +

∫ R

0

r2(1− εs,n+1
h )Dox ∂ω

ox,n+1
h

∂r

∂vh,3
∂r

dr

+

∫ R

0

r2

ρ

ox→s
M vh,3dr = 0. (43)

4 FEniCS
FEniCS is a software library for solving PDEs using finite element methods [42]. It consists of a
number of components such as DOLFIN, FFC, FIAT, Instant, mshr and UFL working together.

FFC, which stands for FEniCS form compiler, is the part which provides a compiler for automatic
evaluation of variational problems [43]. By using FFC as the form compiler one can express
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problems with the Unified Form Language or UFL. UFL can be used to express finite element
problems "in a near mathematical way" [44] which generates an abstract representation of the
problem which can then be interpreted using FFC. To generate the basis functions the component
finite element automatic tabulator or FIAT is used [45]. UFC, Unified Form-assembly Code,
works together with the other components and are used to assemble the matrices and vectors
which FEM gives rise to [46]. The software, written in C++, which brings the previously
mentioned software components together is DOLFIN [47]. DOLFIN allows the user to specify a
finite element problem in a variational form using UFL and FFC which is then evaluated using
basis functions generated by FIAT on a mesh constructed with mshr. Furthermore DOLFIN has
a Python interface and C++ interface to allow programming to be done in either language.

5 Results
None of three models investigated were implemented completely, and as such the results shown
are not complete either. The second model (Chaplain) is missing the adhesion directed growth
term, and the third model (Mascheroni) lacks the moving boundary and is as such only simulated
for a fixed radius.

5.1 Sciumè
For the model by Sciumè [1] the velocity terms for the solid phase was not described in a way
that made the model reproducible. The treatment of the solid phase, the ECM, is the main
focus and new for this model, but in the article the terms that are used and the implementation
for the calculated results were not explained in a clear enough way for us to be able to reproduce
and implement this model.

5.2 Chaplain
When running the simulation the following values suggested by Chaplain et al. [3] was used:
D1 = 10−4, µ1 = 0.1, γ = 10,D3 = 10−3, α = 0.1, λ = 0.5, R = 0.1, Scc = 0.5 and Scv = 0.1. As
in the original paper no remodeling of the ECM takes place i.e. ψ(t,u) = 0. A change compared
to the model in [3] is that Scc changes abruptly from its initial value to Scc = 0.48.

The results of solving (19) from t = 0 to t = 0.05 using FEniCS are shown below in Figure 1.

(a) t=0. (b) t=0.03. (c) t=0.05.

Figure 1: Solution to (19) for the concentration of tumor cells, c, at time 0, 0.03 and 0.05 when setting
ψ(t,u) = 0.

The results of setting A(t, χ,u(t, ·)) = 0, no adhesion guided directed cell migration, and solving
the system from t = 0 to t = 60 using are shown below in Figure 2.
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(a) t=0. (b) t=30. (c) t=60.

Figure 2: Solution to (19) for the concentration of tumor cells, c, at time 0, 30 and 60 when setting
ψ(t,u) and A(t, χ,u(t, ·)) = 0.

5.3 Mascheroni
After deriving the discrete system of equations (41)-(43), to implement it in FEniCS, first we
define the discretization mesh. For this model, the symmetry reduces the problem to 1D, and as
such a 1D mesh can be used. Next, we define the test- and trial functions by defining a mixed
element as the product space of the three basis functions v1, v2, v3 and use that to define the
function space to be able to represent the entire system as a single entity. Each of the basis
functions are defined as class P1 according to the Periodic Table of the Finite Elements. Define
the boundary and initial conditions listed in equations (23), (24) and (25) on the appropriate
subspaces. To solve the mixed equation system where the variables are present in multiple of
the governing equations, add all of the equations together and set the right hand side to zero.
This is done to combine all of the equations into one FEniCS-object and to be able to use the
built-in Newton solver for nonlinear problems, as the equations are nonlinear. To handle the
tumor growing, the boundary conditions presented in (23) and (24) has to be moved along with
the outer boundary of the tumor moving. The boundary moves with velocity according to (26).
To implement this in FEniCS, two different approaches were tried. The first was to create a new
mesh between each timestep, slightly larger as the tumor will have grown, and then interpolate
the solution onto the new mesh. The second approach was to use a large enough mesh from the
start of the simulation, but to introduce a penalty method and then move where the penalty
should be applied each timestep. Both of these approaches require that the velocity of the
boundary can be evaluated numerically, either to define the new mesh endpoint, or to be able
to move the penalty. Ths is where the implementation of this model got stuck as the expression
was not able to be evaluated due to mismatching data and object types in Python and FEniCS.

The results presented below are for a simulation where the radius of the tumor is fixed at 200µm
with the parameter values used as ωoxenv = 7.0 · 10−6, cox = 1.48 · 10−7, γs0 = 3.0 · 10−4 kg/(m3s),
β = 0.5, εsext = 0.8, εs0 = 1/3, k = 1.8 · 10−15 m2, µl = 1.0 · 10−3Pa s, Dox = 3.2 · 10−9 m2/s,
ρ = 1.0 · 103 kg/m3, ωcritox = 2.0 · 10−6, γsg = 5.4 · 10−3 kg/(m3s), γsn = 1.5 · 10−1 kg/(m3s),
λsl = 1.15 · 10−2 kg/(m3s), and α = 1.0 · 105 Pa.
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(a) εs (b) ωNt

(c) ωox (d) Radial invariance

Figure 3: Solutions to the governing equations (20)-(22) while using a fixed radius R = 200µm.

As the expression for how much the boundary should move between timesteps could not be
evaluted the boundary conditions of the model were not implemented correctly and as such, the
model only runs for a fixed radius.

6 Discussion
Figure 2 shows that without any adhesion directed cell growth or ECM remodelling the solution
to (19) behaves like a diffusion equation without a decreasing concentration within the tumor,
i.e. the radius of the tumor increases giving it a symmetrical growth. When adding the adhesion
directed term we get the results in Figure 1 where the tumor clearly have a directed growth.
However the results are unrealistic since it not only grows into the shape of a band but also
have discontinuous regions, regions not connected to the main population, and healthy regions
surrounded by tumors. Furthermore the built in non-linear Newton solver in FEniCS fails to
solve (19) after t = 0.05, within 1000 steps, when the same domain as in [3] is used. The domain
size is claimed in [3] to be large enough such that the tumor should not grow to the limit of the
domain. This problem might have to do with the tumor concentration reaching the limit of the
computational domain, unit square centred around zero, and according to [3] the tumor should
not reach said limit.

From these results, Figure 1 and Figure 2, one can draw two conclusions. First the tumor grows
unrealistically fast when the adhesion directed growth term is added, the implementation of said
non local integral is most likely incorrect. Second, without the adhesion directed growth term
the tumor grows symmetrically and without any necrosis. Such growth is a naive and unrealistic
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way of modelling a tumor since it does not react with the environment nor showcase any cell
death, which could imply that the proliferation of the tumor cells are high enough to maintain a
constant concentration of cells within the tumor, which once again seems unrealistic. Hence one
can conclude that for a realistic tumor growth model a diffusion-reaction equation does not give
a satisfying result, provided that the adhesion directed term was the only part not implemented
correctly.

The results of the Mascheroni simulations shows in Figure 3a that the volume fraction of tumor
cells εs approximately stays the same as the initial condition, with a slight increase before
plateauing. Figure 3b shows that the mass fraction of necrotic tumor cells ωNt increases and
Figure 3c that the mass fraction of oxygen ωox decreases as time passes. As the tumor does not
expand and there is no flow of nutrition through the boundary of the tumor the tumor cells will
die due to low levels of nutrition, which explains the increase in necrotic tumor cells. The volume
fraction of tumor cells stays the same as the only changes happening to the solid phase is LTC
becoming NTC, both which are a part of the solid phase, as such the total volume fraction is the
same. Similarly the oxygen decreases due to the tumor cells consuming oxygen before starting
to die as the oxygen is consumed. If the radius were to expand over time the tumor would have
access to a supply of oxygen, meaning that the tumor could grow at the boundary, while dying
in the center, creating a radial dependency which is not present in the simulations as shown by
Figure 3d. The sharp dropoff at the outer boundary of the tumor is negligible as the error is of
the order 10−9.

Evidently, the implementation for each model was unsuccessful, most likely due to a lack of
knowledge regarding how to implement the models in FEniCS. The problem displayed in Figure
1 is most likely due to the non-local integral being implemented incorectly while for the model
presented in [2] we did not manage to implement a moving boundary. With more time these
problems might have been solved by us getting more experience with FEniCS or trying to
seek the help from more someone with more knowledge about implementing similar problems
in FEniCS. Furthermore, more time would have allowed us to persue other ways to try and
solve the problems, i.e. using trapezoidal rule for integrating the non-local operator instead of
FEniCS built in integration. Had we however manage to implement the models correctly then
one way to combine the models would be to use the continuum model of Chaplain [3] to compute
how the boundary should move and then use this data in Mascheroni [2] model. However such
a combination would not be trivial and would most likely mean that the spherical symmetry
would be lost increasing the complexity of implementing the model. At the same time such a
model would hopefully be able to describe the interplay between nutrients and adhesion for both
growth and movement of tumors leading to a better invasion model.
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