Julia vs Python for a cell simulation

Hampus Frojdholm & Carmen Lee
hampus.frojdholm@gmail.com, mailtocarmenlee@gmail.com

UPPSALA
UNIVERSITET

1. Introduction

Python has gained considerable popularity since its intro-
duction in 1991 and has a large ecosystem for scientific
computing.

Julia, a relatively young language designed for scientific
programming, has also gained traction in recent years.

The performance difference between the two is mea-
sured using a centre-based model for tissue me-
chanics simulation.

2. Cell interaction

Cells are modelled as spheres.

Forces are determined by the dis-
tance between sphere centres and a
predetermined force law.

20 ho.urs later

Cells divide according to a normally
distributed cycle (arbitrarily set to

N(6, 1)).

)

cells attract each other

Z////

LT~

cells repel each other - N

cells at rest

Force

- —
\\\\

S

S

Distance between cell centres d

3. Equations of motion

Under the condition of low Reynolds numbers, the velocity
of an object is proportional to the sum of total force.

For a cell / its motion is governed by the following equa-
tion:

where r; is the position of the cell centre,
n the wscosﬂy of the fluid, F(t) the
force exerted on cell / by cellj at time
t, and N{(t) the set of neighbours of
40 hours later cell I
ki This yields a first order ODE system
for the motion of the cells, which is
solved with numerical integration.

......
o o . .
......

4. CbmosJulia

CbmosdJulia is based on the Python package
CBMOS written by researchers at Uppsala Uni-
versity. CBMOS is a tool for centre-based cell simulation.

Users can set the initial cell sheet configuration, choose
force law and the type of solver. Other parameters such as
step size and arguments for the force law function are also
up to the user.

The graphic in the centre is made with data generated by
CbmosdJulia.

5. Results

25

—_ =2 DN

© o ©°
/

/

/

\

\

Execution time ratio
4
|
|
|
|
|
O
)
I
&
I
|
o

el

o

20 25 30 35 40 45
Simulation final time [h]

Figure 1: Speedup of CbmosJulia compared to CBMOS. The
speedup of CbmosJulia compared with CBMOS is consistently
around 10X. The ratio was calculated using the mean execution
time of 10 samples at each final time. The grey regions represent
the maximum and minimum ratio measured at each final time.
The vertical grey dashed lines indicate mean division cycles.

6. Conclusions on Julia

+ Powerful programming paradigm for modelling math-
ematical problems.

+ Can achieve “C-like” performance.

+ Comprehensive standard library for scientific comput-
ing.

+ High-quality numerical packages.

+ Good official language documentation.

- Slow start-up time and JIT-compilation takes time.

— Need to unlearn vectorisation.

— Packages are not as mature, e.g. for plotting.

— Editor support is lacking.

