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1 Introduction

Since its introduction in 1991, the programming language Python has gained considerable popularity. In recent
Stackoverflow’s yearly developer surveys [1, 2], it has frequently ranked amongst the top languages. The language
Julia was created in 2009 and unveiled to the public in 2012. The relatively young niche language, designed for
scientific programming, has also gained traction in recent years. Its co-creators won the James H. Wilkinson Prize
for Numerical Software in 2019 [3] and the number of GitHub stars for Julia doubled since the stable release of
Julia 1.0 in 2018 [4].

Though Python is easy to use as a high-level general-purpose language, it is not specifically built for achieving high
performance. High performance computing using Python centres around the SciPy-ecosystem [5], with a number
of libraries written in other compiled languages, providing efficient algorithms and data structures for the Python
community. In comparison, Julia is created for scientific and high-performance computing while incorporating
concepts from well-established programming languages, such as Matlab, Lisp and Python among others.

Our objective is to compare the two programming languages in terms of performance. Through the implementation
of a centre-based model for tissue growth simulation, we are able to measure the performance of both in a setting
of scientific computing.

The remainder of the section first introduces the centre-based model which is the conceptual model of how cell
interactions are treated in our simulation. This is followed by a description on the Centre-based Model Overlapping
Spheres (CBMOS) Python package, based on which we implemented our Julia version of the simulation. Section 2
compares Julia to Python with respect to syntax, language features, library ecosystem and workflow in a scientific
computing context. Section 3 describes our Julia package and provides a brief user guide. Section 4 presents the
experimental results and we conclude in the last section with some remarks on future extensions.

1.1 Centre-based model in tissue mechanics simulation

Centre-based models are widely used for illustrating the mechanics of cell populations [6, 7]. In a centre-based
model, cells are regarded as two- or three-dimensional spheres of the same radius. The spheres are capable of
interacting with each other when the cells overlap (the distance d between the cell centres is less than twice the
cell radius). Fig. 1 illustrates the interaction mechanisms between the cells. When d is very small, the cells repel.
When the cells move apart, there is a point where the cells are at rest, after which cells attract before moving too
far away from each other.

Figure 1: Repulsion/adhesion strength varies with the distance between cells.

It is assumed that cells divide given a predefined cycle-time, which is normally distributed. The newly added cells
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push the population into a new spatial configuration. The mechanical repulsion or adhesion, conditioned on the
distances between the cells, can be modelled using different force models depending on the assumptions on the
interaction. Fig. 2 illustrates a comparison between a few different force functions. As we can see, the models
differ in magnitude and how rapidly the forces change in relation to the change in distance. In total, CBMOS
implements 11 different force models.

Figure 2: Examples of different force-function models. The radius of influence is set to 1.5 unit
length

The forces are balanced on each cell centre. According to Newton’s second law of motion, for a single cell1:

m
d2r

dt2
= Fvisc + Fcell. (1)

The left-hand side of Eq. 1 is the inertial force. Fvisc is the viscous force or the drag force and Fcell the total
repulsion or adhesion force exerted on the focal cell from its neighbours. The viscous force, defined by Stokes’
law under an extremely small Reynolds number, is proportional to the velocity dr

dt :

Fvisc = �⌘
dr

dt
. (2)

The Reynolds number is defined to be the ratio between the inertial force and the viscous force [9, p. 27]. The
Reynolds number for living cells in the substrate environment is evaluated at the magnitude of 10�4 or 10�5 [10].
Under this condition, the inertial force on the left-hand side of Eq. 1 is ignored. With the left-hand side being zero,
for a cell i, a first-order differential equation is obtained [6]:

⌘
dri
dt

= Fcell,i(t) =
X

j2Ni(t)

Fij(t), (3)

where ri is the position of the cell centre, Ni the set of cells within the radius of influence. Fi denotes the sum
of the forces exerted on the focal cell by nearby cells and ⌘ the damping constant, which is also the viscosity of
the fluid with the unit Pa· s. Once all the forces are obtained for a time step, the ordinary differential equations
(ODEs) are solved numerically to obtain the new positions.

1The equation could also contain an additional term–the elastic restoring force if the deformation of the cell itself is considered [8].
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1.2 Centre-based Model Overlapping Spheres (CBMOS)

CBMOS is a simulation package written in Python by researchers at the Division of Scientific Computing, Depart-
ment of Information Technology, Uppsala University2. Currently, there exist several computational frameworks
for cell mechanics simulation, e.g., CompuCell3D [11], TiSim [12], Chaste [13] and PhysiCell [14]. However,
most of these frameworks focus on domain-specific tasks such as cancer cell growth, instead of the numerical as-
pect of the simulation. The CBMOS framework aims to provide a light-weight tool where different force models
and solvers can be tested for performance. Thus, the framework enables the exact choice of the preferred force
function, its parameters, the type of solver and the time step. The simulation creates a CBMSolver object that
takes a list of Cell objects as input and returns all the lists of Cells at each time step (see Fig. 3). The Cell
object contains the following information: ID, position, birth time, next division time and parent ID. The solver
also includes methods handling the cell splitting events and integration of the ODE in Eq. 3.

C0 C1 C2 C3 C4t0

C0 C1 C2 C3 C4 C5t1

C0 C1 C2 C3 C4 C5 C6t2

C0 C1 C2 C3 C4 C5 C6t3

C0 C1 C2 C3 C4 C5 C6 C7t4

C0 C1 C2 C3 C4 C5 C6 C7 C8t5

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9t6

Figure 3: Schematic for the CBMSolver output. CBMSolver returns the cell history which is a list
of lists containing the Cell objects at each time step. Each row is the list of Cells at the respective
time step. Each Cell object contains the information of ID, position and parent ID among others.

A minimal working example for a 1D simulation is shown in Lst. 1. The choice of the force function is logarithmic,
and the numerical integration method is Euler forward. Users can opt for more complex numerical method using
the scipy.integrate.solve_ivp API. The last element of history is the end state of all the cells.

1 import numpy as np
2 import force_functions as ff
3 import euler_forward as ef
4 import cell as cl
5

6 dim = 1

7 cbm_solver = CBMSolver(ff.logarithmic, ef.solve_ivp, dim)

8 cells = [cl.Cell(0, [0], proliferating=True),

9 cl.Cell(1, [0.3], proliferating=True)]

10 t_data = np.linspace(0, 1, 101)

11 history = cbm_solver.simulate(cells, t_data, {}, {})

Listing 1: CBMOS simple usage example.

2Work-in-progress by Sonja Mathias and Adrien Coulier.
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2 Comparing Julia to Python in a scientific computing context

This section compares the Julia syntax to Python and lists the major language features of Julia that we used when
implementing CbmosJulia. A short discussion on the numerical computing ecosystem and the workflow follows
at the end.

2.1 Language features

Syntax. There are a few notable syntax differences Python users should look out for coming from Python to Julia.
Superficially the syntax of Julia is much more similar to that of Matlab. For instance, Julia is indexed from 1
instead of the familiar 0-index for Python, the last index is end instead of �1, and the last end index in slicing is
included (see the examples in Tab. 1).

Math-like notations and Unicode characters are supported in Julia. For example, users can redefine the XOR
function using the Unicode character �:

julia> �(a::Bool, b::Bool) = xor(a, b)

� (generic function with 1 method)

julia> �(true, true)
false

This can then be used as an infix operator [15]. In fact, most operators in Julia are just functions with mathematical
symbols as their names. The familiar lambda functions in Python are anonymous functions in Julia defined as
x->f(x). Ordinary functions are enclosed by the function declaration statement function ... end. The
keyword end is also used to indicate the end of all other block structures in Julia. The return statement of a
function is optional as the function will return the value of the last statement. A useful construct in Python is the
with-statement using context managers. A similar effect of automatic resource management can be achieved in
Julia using the do-block. The do-block is a more convenient syntax for using anonymous functions as arguments.
The Julia equivalent to opening a file with the with-statement can be seen below:

1 open("filename.txt") do file_handle

2 # Do something

3 end

Table 1: Examples of syntax differences between Python and Julia

Use Python Julia

Slicing arr=[1, 2, 3] > arr[0:2]
[1, 2]

> arr[1:2]
[1, 2]

varargs def f(*argv): function f(x...)
varkwargs def f(**kwargs): function f(; kwargs...)
Typing def f(x:int) -> int: function f(x::Int8)::Int8

Tab. 1 lists some examples of the syntax differences between Python and Julia. An exhaustive list comparing Julia
to Python and a few other languages can be found at the official Julia website [16].

Multiple dispatch. The core programming paradigm of Julia is multiple dispatch, which refers to performing
function dispatch dependent on the run-time type of all parameters. This can be seen as a generalisation of

4



single dispatch, common in object-oriented languages such as Python, where the function being executed de-
pends on the type of the object. In Julia, when a function is defined for the first time, a generic function is
defined with a single method. Subsequent definitions of the same function with different parameter types add
methods to the generic function. For instance, we can define inner_prod(u::Vector, v::Vector) and
inner_prod(f::Function, g::Function) as two methods of the same function. When the inputs are
Vectors, the function can compute the dot-product of the two vectors; when the types are Functions, it can
perform an integration of the two functions within some defined bounds. The core of Julia uses multiple dispatch
heavily, for example the addition operator, +(), has 166 methods for adding anything from integers to ranges
and matrices. To check the methods of a function func you can use methods(func). Implementing a new
operation of addition for custom types is just a matter of defining more methods to Base.+.

Types. Julia has a powerful type system, featuring parametric types and both abstract and a number of concrete
types. In this report we focus on abstract types and one of the concrete types, namely composite types. One thing
to remember about types in Julia is that types belong to values, not variables. A value is bound to a variable name,
that can be optionally typed, but the type is part of the value. Additionally, at run-time there are no abstract types,
only concrete types. As such, abstract types are useful only for the construction of type hierarchies. The Number
abstract type is the super-type of all number types in Julia. A function taking a parameter of type Number accepts
any number type, such as integers, floating point numbers or complex numbers. At the top of the type hierarchy
there is the abstract type Any. All types are implicitly and explicitly subtypes of the Any type. Thus, a variable
with the Any type declaration can hold any value. Abstract types can be defined using the abstract type
keyword.

Composite types are also known as records or structs. They store other values in named fields. In many other
languages the only type that can be defined by the user are composite types. They are defined using the struct
keyword. Along with the type Julia also allows the definition of a constructor for the type. If none is specified
there will be a default constructor generated. Constructors can be used to allow for easier construction of the type.

Singletons. Julia has a special kind of composite type named singletons. These are empty composite types and
there can only be a single instance of such types. The only property of singletons is the type. If a singleton
is passed as parameter to a function, it can dictate the function’s dispatch. This property is very useful when
we want to take advantage of the multiple dispatch in Julia. For instance, if we have multiple definitions of the
function but the numerical inputs are the same, we can use a type parameter to indicate the difference. This is
particularly relevant for the force function in the CbmosJulia package, where the force function performs different
computations dependent on the choice of the force model. The code in Lst. 2 shows the declaration of two of the
force functions.

1 abstract type ForceFunction end
2 struct Linear <: ForceFunction end
3 struct Cubic <: ForceFunction end
4

5 function force(::Linear, r; µ=1., s=1., rA=1.5)

6 # Do something

7 end
8

9 function force(::Cubic, r; m=1., a=5., s=1., rA=1.5)

10 # Do something

11 end
12

13 function force(::Morse, r; m=1., a=5., s=1., rA=1.5)

14 # Do something

15 end

Listing 2: Example declaration of two of the force models.
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The force() function declared in Lst. 2 takes a type parameter besides the mandatory parameter r and other
optional parameters given after the semicolon. If we want to call the force() function for the cubic force-
model, we would write the function as force(Cubic(), r; kwargs...). Similarly, a linear force-model
will use the Linear singleton to call the correct implementation (force(Linear(), r; kwargs...)).
According to the Julia performance tips [17], breaking a “compound function” into multiple definitions rather than
relying on if-statements helps the compiler call the most applicable code directly. Therefore, it is suitable to use
the design choice above of having separately defined force functions with similar function signatures.

In-place operations. An in-place function refers to a function where one or more of the parameters passed by
reference are manipulated by the function. This can be more efficient since there is no extra space needed for
copying values. Common in-place operators that can be defined for Python classes are iadd(), isub() and
iconcat(). Many Python packages such as NumPy and pandas also offer in-place options. Although present
in Python, much more emphasis is placed on in-place operations in Julia.

In Julia, in-place implementations of functions are indicated by an exclamation mark at the end of the function
name. The vectorised “dot” operator in front of an operator broadcasts the operator to all elements and returns an
in-place assignment. This is the same as in Matlab, but works for all functions since Julia operators are normal
functions.

Macros. Macros in Julia are a handy feature which allows for a simple interface and code generation. They allow
for meta-programming, which means using Julia code to process and modify Julia code, and to even control if and
when the modified code runs [18]. It is also possible to change the code to make it run faster for example when
running code in parallel. A very common macro in Julia is @time. When added in front of a Julia command,
it inserts commands before and after the code prior to it being evaluated, which will record the elapsed time and
memory usage after the code is being run. Another useful example is the @gif macro. A simple usage is shown
below:

1 @gif for i=1:100

2 plot(...)

3 end every 10

The above usage of the @gif macro saves every 10th frame and outputs an animation gif at the end. Writing
custom macros is similar to writing ordinary functions in Julia with the macro keyword:

julia> macro square(a)

return a * a

end
@square (macro with 1 method)

julia> @square 5

25

Explicit vectorisation. Another interesting feature of Julia is the preference for for-loops combined with the
macro @simd (single instruction multiple data) over broadcasting using the dot notation. So in terms of syntax,
the code looks de-vectorised. The premise is that the loops being annotated are perfectly parallel. The macro
@simd allows the compiler to take extra liberties to allow loop re-ordering and automatic vectorisation when it
sees fit, which can potentially improve the execution time [19]. The performance improvement is discussed in
Rackauckas’s DifferentialEquations Tutorials [20].

For a more thorough walk-through of Julia and all its features the official language documentation is a great
resource [21].
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2.2 Standard library and numerical library ecosystem

The most common packages for scientific computing in Python include NumPy containing the base implementa-
tion of multidimensional arrays and vectorised operators, SciPy for optimization, linear algebra and other technical
computing and Matplotlib for result visualisation.

In Julia a lot of the functionality provided by NumPy and SciPy is present in the standard library, most notably the
LinearAlgebra and SparseArrays modules which define functions for working with matrices and vectors, including
the sparse variants. LinearAlgebra also includes wrappers for the underlying LAPACK and BLAS libraries.

For solving the system of ODEs, we use the Julia package DifferentialEquations [20]. It provides Julia implemen-
tations of solvers for differential equations which we will discuss in detail in Section 3.1. Other useful libraries
such as Distributions, LinearAlgebra and Random offer self-explanatory functionalities. Plots is the current de-
facto standard plotting library for Julia. It supports multiple backends for plotting and can even use Matplotlib. It
is enhanced by RecipesBase for plots of custom types of other libraries. For performance measuring, Benchmark-
Tools supplies the essential tools for tracking and comparing benchmark results.

2.3 Workflow for scientific computing research

Because Julia is relatively new, it is difficult to outline a workflow that is complete or future proof. We strongly
encourage readers to consult a few additional guides online and test out different ways before settling with one.
Below is a short summary of our approach.

Julia scripts can easily be run in the Julia Read/Evaluate/Print/Loop (REPL) console simply by using the command
include("<script name>"). This effectively runs the script line by line and will also make all modules
and functions defined in the script available in the global namespace.

To make a Julia package/module available in the current namespace, so-called importing, there are two ways:
1) using <modulename>, 2) import <modulename>. Both methods import the names exported in the
module to the namespace. Exporting means, for example, that a function or type is explicitly declared with
export <name> in the module definition. Without doing so, the names are not directly available but can
still be reached using the dot notation similar to how Python works. The command using <modulename>
imports all the exported names of the module into the global namespace. While import <modulename> only
makes the module itself directly available. To extend a function defined in another module, the function needs
to be imported using the import keyword or the module imported with using <modulename>. The subtle
differences between the two approaches are better illustrated with examples as shown in Tab. 2.

Table 2: Comparison of available import statements with an example module M, which contains two
exported functions f1 and f2 and one additional function f3, which is not exported (adapted from
the official Julia documentation [22]).

Command Available in the namespace Functions extendable

using M f1, f2, M.f1, M.f2, M.f3 M.f1, M.f2, M.f3
using M: f1, f3 f1, f3
import M M.f1, M.f2, M.f3 M.f1, M.f2, M.f3
import M.f1, M.f3 f1, f3 f1, f3
import M: f1, f2 f1, f2 f1, f2

To be able to import a local module, its project environment must first be activated. The code snippet below shows
how to activate the project environment in the folder where the project is located. In the julia REPL, press ] to
switch to pkg> (the native package manager mode). Press enter to return to the REPL console.
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shell> cd MyProject.jl

shell> julia

...

(v1.3) pkg> activate .

Activating environment at `<MyProject Path>/Project.toml`

(MyProject.jl) pkg>

julia> using MyProject

Local packages can also be installed into the global environment in development mode using dev instead of add
at the pkg> REPL. This way the code will be linked instead of copied and changes will be visible in the global
environment immediately. See the example below.

shell> cd MyProject.jl

shell> julia

...

(v1.3) pkg> dev .

For prototyping in Julia, it is convenient to use IJulia, a Julia-language backend similar to IPython in Python. It
can be launched in the same way as launching a Juypter notebook. More information regarding installation and
usage can be found on JuliaLang (https://pkg.julialang.org/docs/IJulia).

Due to the time it takes for Julia’s just-in-time (JIT) compiler to warm up and precompile code, it is important to
keep the Julia session alive for as long as possible. Using the library Revise, code can be recompiled when it is
changed. Our workflow is to keep most of the simulation code and functions in an external file and use the REPL
or an IJulia notebook with Revise to run the code. This way the Julia session is kept alive while allowing the
simulation code in the external file to be changed. The biggest drawback using this method is that some structures
are not allowed to be redefined, most notably composite types, requiring the Julia session to be restarted when
such changes are made. Another problem is that Revise might sometimes not update the code, this is most often
due to a syntax error in the external file. However, debugging can be a challenge as the error messages are not
always clear.

Having described Julia’s language features compared to Python, we will delve into our implementation of the
CBMOS package in Julia in the next section.

3 Porting Python CBMOS to Julia

In this section we describe the Julia version of CBMOS, CbmosJulia. The main dependencies, the structure of the
package and some examples are described. At the end we list the measures we took to improve the performance.

3.1 Package dependencies

The main dependencies are DifferentialEquations and RecipeBase. The former is essential for solving the systems
of ODE and the latter for customised plots.
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3.1.1 DifferentialEquations

The most important dependency of CbmosJulia is DifferentialEquations, which contains extensive functionalities
for solving differential equations. For a continuous ODE, the general equation is:

u0 = f(u, p, t) (4)

where the p are the parameters of the model and t the time variable. f defines the rate of change of u. To solve the
ODE, we also require the initial value u0. The constructor ODEProblem() generates an ODEProblem struct,
which is the input parameter for the generic solve function. A simple working example of exponential growth
is given below [23]:

1 using DifferentialEquations

2 f(u,p,t) = 1.01*u

3 u0=1/2

4 tspan = (0.0,1.0)

5 prob = ODEProblem(f,u0,tspan)

6 sol = solve(prob)

DifferentialEquations also allows injection of user code into the solver using callback functions. A Callback
function runs the user code when a given condition is fulfilled. There are several types of Callback functions
at the users’ disposal. They are capable of handling continuous and discrete time events. The callbacks can
also be organised into a set to be passed to the solver. In our case, we opted for the IterativeCallback,
which calls the callback at a specified integration time and then prompts for the next callback time. This allows
us to iteratively apply the effect of moving the cells and finding the time for the next cell division event. An
IterativeCallback is constructed as follows [24]:

1 function IterativeCallback(time_choice, user_affect!,

2 tType = Float64; initial_affect = false, kwargs...)

The function time_choice(integrator) returns the time of the next callback, and integrator is the
previously defined ODEProblem struct. The function user_affect!(integrator) takes the same input
and performs an in-place modification of the integrator thus it returns nothing. In our case, we used the
callback to extend the ODE with the addition of the new cell and its necessary data.

3.1.2 RecipeBase

Another package we find very useful is RecipeBase, which is part of the JuliaPlots ecosystem [25]. It allows
users to define transformations of custom types and attach attributes to allow plotting with the Plots package.
With minimal code, users can implement complex visualisation routines. We use this package to define how the
simulation results should be visualised.

A minimal working example plotting the growth of the cells given the Growth type and the cell population
cellPop from the solver result is shown below:

1 struct Growth end
2 @recipe function f(::Growth, cp::CellPopulation)

3 sol = cp.sol; t = sol.t; dim = cp.dim;

4 y = [div(length(u), dim) for u in sol[:]]

5 end
6 plot(Growth(), cellPop, xlabel="time step", ylabel="number of cells")
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Fig. 4 shows the result produced by the above code.
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Figure 4: Example of using recipes with Plots and the custom types defined in CbmosJulia.

3.2 Structure of the package

The CbmosJulia package contains three modules (Tab. 3).

• The cells module contains useful tools for working with the simulation result. This includes the types
CellPopulation and CellHistory as well as functions for extracting information from them. The
CellPopulation type is essentially a wrapper around the ODESolution generated by the solver and
other useful information we want to track for the cell population. CellHistory stores the ID, time and
position information of a particular cell. The module also defines the plot recipes [26] which visualise
different results based on the input type.

• The forcefunctions module defines the mathematical expressions of the supported force functions.

• CbmosJulia is the main module containing the definition of the ODEs, callbacks, event handlers and
the simulation main method. The main function simulate(args...) returns a CellPopulation
struct.

Table 3: Sub-modules in the CbmosJulia package

Module Functionality

cells Structs and functions for cell related operations
forcefunctions Multiple dispatch of the force functions

CbmosJulia Functions for the simulation

The simulation involves two iterative steps: cell division and cell relaxation. Cell divisions lead to tension between
the cells that are subsequently relaxed as the population is pushed into new spatial configurations. A cell division
happens when a cell splits into two: the child and parent separates symmetrically from the original position of the
parent in a randomly chosen direction determined by div_dir(). The separation distance of the cells can be set
but has a default of 0.3. The function mod_divtime!() performs an in-place modification of the division time
for the parent cell and appends one for the child cell. The division event is, as previously mentioned, handled by
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the IterativeCallback() function in the DifferentialEquations package, which triggers the event when the
next division time is reached. The integrator solve() solves the ODE system and updates the positions of the
cell centres. This iterative process goes on until the specified final time is reached.

Cell division

Cell relaxation

div_dir(args...) &
mod_divtime!(args...) IterativeCallback(args...)

integrator solve(args...)

govern triggers

updates positions

Figure 5: Events in the simulation

3.3 User guide

To import the package, in the Julia REPL console [27], run

pkg> activate <path-to-CbmosJulia>

julia> using CbmosJulia

This activates the CbmosJulia project and makes the package available. Lst. 3 shows the function signatures for
the main simulation function. The semicolon ; separates the positional and keyword arguments in Julia. Cell
information, force function type, and time span are mandatory; the default distribution of the division time is a
normal distribution centred at 24 hours. Lst. 3 is also a good example of the multiple dispatch, where the same
function is extended given different argument types. The simulation supports supplying the cell positions in a 2D
array or as the 1D flattened version. It also supports passing in the CellPopulation struct which could be the
output of a previous simulation.
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1 simulate(

2 cells::Matrix{Float64}, # cell positions. In 2D: [x1, x2...; y1, y2,...]

3 ftype::ForceFunction, # type of the force function

4 tspan, # tuple of time span

5 dist=Normal(24); # distribution of the division time

6 forceargs=(), # arguments for the force function

7 solverargs=(), # additional arguments for the solver

8 seed=nothing # seed for reproducibility

9 )

10

11 simulate(

12 cells::Vector{Float64}, # position of cells. In 2D: [x1, y1, x2, y2 ...]

13 dim::Integer, ftype::ForceFunction, tspan, dist=Normal(24);

14 forceargs=(), solverargs=(), seed=nothing

15 )

16

17 simulate(

18 cellpop::CellPopulation, ftype::ForceFunction, tspan, dist=Normal(24);

19 forceargs=(), solverargs=(), seed=nothing

20 )

Listing 3: CbmosJulia simulation signatures

A minimal working example in 2D is given in Lst. 4. The example simulates the cell population for 30 h. The
division time is set to be a standard normal distribution centered around 6 h. The numerical solver uses Euler
forward algorithm with the time-step set to 0.01 h.

1 using CbmosJulia, DifferentialEquations, Distributions

2 # Initial cell configuration

3 n_x = 5

4 n_y = 5

5 xcrds = [(2 * i + (j % 2)) * 0.5 for i = 1:n_x, j = 1:n_y]

6 ycrds = [sqrt(3) * j * 0.5 for i = 1:n_y, j = 1:n_x]

7 cells = hcat([[x, y] for (i, (x, y)) in enumerate(zip(xcrds, ycrds))

8 if !(i in [1, 5, 6, 16, 21, 25])]...)

9

10 tf = 30.0 # final time

11 dt = 0.01 # simulation time step

12 µ = 1.0 # force function coefficent

13 # solverargs and forceargs can be either NamedTuple or Dict{Symbol, Any}

14 forceargs = (µ = µ,)

15 solverargs = Dict(:alg => Euler(), :dt => dt)

16

17 result = simulate(cells, Cubic(), (0., tf), Normal(6),

18 solverargs=solverargs, forceargs=forceargs)

Listing 4: CbmosJulia usage example. Some of the key features, such as choosing the force function
and division time parameters are shown.
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3.4 Performance optimisation

The Julia documentation contains a page with guidelines on writing fast Julia code [17]. When profiling CBMOS
the construction of the ODE seemed to be a critical component. Focus was therefore spent on improving the
performance of that part of the code. Additionally, since we are using the solvers from DifferentialEquations there
is not much optimisation to be done in other parts.

ODE construction. In CBMOS the ODE is constructed using NumPy arrays. To avoid Python for-loops it uses
exclusively NumPy functions. This leads to all ordered pairs of the cells being constructed and a lot of duplication.
The first step in increasing the performance of the code is to de-vectorise. De-vectorising is when the explicit for-
loops are written instead of using vectorised operations. In Python, we are forced to always use the vectorised
operations of NumPy for performance. In Julia, using for-loops is often a lot faster.

De-vectorising allows us to improve the algorithm for calculating the forces between cells. Due to Newton’s third
law the force exerted by cell i on cell j is the same but opposite of the force exerted by cell j on cell i. In Julia we
can take advantage of this and only calculate the force for every pair of cells once, essentially halving the number
of loop iterations. Additionally, by de-vectorising the vector additions and norm calculations inside the inner loop
we can avoid unnecessary heap allocations. Arrays in Julia are heap-allocated. Since the spatial dimension is
low and the number of cells is large, the overhead of allocating numerous small arrays is very large. The result
of de-vectorising in the inner loop is going from several memory allocations per cell combination to a total of 6
allocations for the entire function.

As a final boost to performance array bound checking was disabled, using the @inbound macro, and SIMD
was enabled for the vector addition and norm calculations. To make disabling the bound checks and using SIMD
safely a few considerations has to be taken into account, as detailed in the performance tips [17]. The type of
the arrays are set to Array since indexing using the 1:n style might not be safe with bounds checking disabled
for all AbstractArrays. Also, when using SIMD the loop iterations have to be independent, which is the
case for our vector addition and norm calculations. However, assigning into an AbstractArray might not be
parallelisable, and that is another reason the type has to be constrained to Array. As a final check, the size of the
array is checked to be the correct size before calculation is started.

Optional typing and type stability. The next part in writing fast Julia code is to make sure the types are correct.
One way of doing this is to include type declarations for function parameters, return types and variables. The most
important of these is the function parameters. By having the correct types, the JIT-compiler can produce efficient
machine code and allows for what is called specialisation. Specialisation is when the compiler produces multiple
versions of a generic function and selects the best one depending on the run-time type of the arguments.

Having the correct types is especially important for container types and structs. Vector{Number} is a one-
dimensional array containing elements of the abstract type Number. The array of this type needs to be an array of
pointers to numbers since a Number can be both floating-point or integer numbers (as well as rational or complex
numbers). The type specification Vector{<:Number} allows for proper specialisation since in this case it is
an array of elements of a subtype to Number. The distinction is that as long as the array at run-time only contains
either floating-point numbers or only integers the array will be stored as a contiguous array in memory and the
compiler can produce efficient code for these cases.

Another important part about types in efficient Julia code is type-stability. Type-stable code is code in which all
types are known at compile time and the variables never change their type during run-time. This can be tricky
when coming from Python since the type of a variable is not often taken into consideration. For example, the
dimension of an array is part of the type, thus reshaping an array is not a type-stable operation. Assigning the
result of a reshape to the reshaped variable is therefore not type-stable. If a performance critical function needs to
perform a type unstable operation, it is recommended to split the function into a kernel function that performs the
calculation and a function that does the conversion and then calls the kernel [17]. This way the kernel function,
which does most of the work, can be efficiently compiled.
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4 Results

In this section we provide details of our experiment and present the performance comparison results.

4.1 Benchmark setup

For benchmarking a Lenovo Y50-70 laptop with an Intel core i7 4720HQ running at 2.6 GHz and 8 GB was used.
To avoid slow-downs due to swapping and since the simulation is quite memory intensive the swap partition was
disabled.

At the time of writing, the latest versions of Julia and Python were used, namely, Julia 1.3.1 and Python 3.8.1.
Julia was downloaded from the Julia homepage (julialang.org) and Python was installed through the Arch Linux
repositories. Source code for the benchmarks is available upon request.

4.2 Initial configuration and parameters

A hexagon of 19 cells was used as the initial condition (Fig. 6). In the simulation, they divide and grow into a
mono-layer covering a larger area (see Fig. 6). The cubic force function was used with parameters µ = 50, s = 1
and rA = 1.5. The division time distribution was a normal distribution with mean 6 and standard deviation of
1. Euler forward was used as the solver algorithm with the time-step 0.003 h. During the initial testing it was
determined that with the given time-step, the longest simulation ran for 46 h before the laptop ran out of memory.
At the end of the simulation, there were approximately 3000 cells. Also, a larger slow-down in CbmosJulia
compared to CBMOS was observed for longer simulation times during initial testing. Thus, more simulation
times were tested closer to 46 h. In total, 8 simulation times were tested starting from 20 h to 40 h with 5 h steps
and then from 40 h to 46 h with 2 h steps.

Due to the stochastic nature of the simulation each configuration was run 10 times and the results were averaged.
Since the simulations are long running, we do not anticipate significant random variations due to other running
processes.

Figure 6: Left: initial cell configuration. Right: cell simulation after 20 h

The choice of time-step was determined by the maximum simulation time that we wanted to test and a brief
convergence test. The test started with two cells, 0.3 unit apart. They were then let to relax until the simulation
time 0.3 h. The simulation uses the cubic force function with default parameters and the Euler forward solver
algorithm. The error was estimated by solving using a time-step 2 magnitudes smaller than the smallest time-step
and using that as the reference solution. The rate of convergence was estimated by fitting the curve C�tp and
can be seen to be around 1 (Fig. 7). The solution appears to become unstable for time-steps around 0.1 h and
ideally the chosen time-step should be smaller. As mentioned before, the time step was chosen to be 0.003 h in
the experiment, which is within the stable region.
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Figure 7: Testing convergence of the simulation. The test consists of placing two cells at the default
separation distance after a division and letting them relax. The orange line is a fitted curve of ||u �
uref || = C�tp, which shows that the rate of convergence to be close to 1 which is expected of the
Euler forward algorithm.

4.3 Performance comparison

CbmosJulia performs considerably better than CBMOS in our experiments. Fig. 8 shows that the execution time
grows exponentially for both versions. This is expected since the number of cells grows exponentially. CbmosJulia
is consistently faster than CBMOS with one order of magnitude. The variations are reasonably small (the error
bars represent two standard deviations), thus the estimate of execution time is rather stable. We notice a large
variation at simulation time 30 h for CbmosJulia. This is because the warm-up in CbmosJulia is quite slow, the
reason for which will be elaborated in Section 5. For some reason unknown to us, BenchmarkTools always started
the benchmarking process at 30 h.

Figure 8: Running time comparison of CBMOS and CbmosJulia. The error bars represent two
standard deviations. The effect of the JIT compilation can be seen when the Julia benchmark is run
without warming up. It starts with the 30 h simulation which has a much higher standard deviation
and a higher mean.
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Fig. 9 illustrates the relative speedup of CbmosJulia in comparison with CBMOS. The upper bound of the blue
region (best case scenario) is determined by the minimum runtime of CbmosJulia and the maximum runtime
of CBMOS; the lower bound (worst case scenario) is decided by the maximum runtime of CbmosJulia and the
minimum runtime of CBMOS. The relative speedup of CbmosJulia is around 10x, and it stays quite stable until
the maximum simulation time we were able to test.

Figure 9: Relative speedup of CbmosJulia compared to CBMOS the blue region represents the best-
and worst-case scenario. Where the top of the blue region is the minimum runtime of CbmosJulia
divided by the maximum runtime of CBMOS and the bottom is the maximum runtime of CbmosJulia
divided by the minimum runtime of CBMOS. The line in the centre represents the division of the
mean execution times.

5 Conclusions and discussions

Julia has a lot of attractive features for working with scientific computing. The syntax is similar to that of Matlab,
and it has powerful modules in its standard library for linear algebra applications. When the standard library is
not enough, it has a package infrastructure that makes it easy to integrate other modules into your code. It has a
growing ecosystem of packages for doing numerical work. Thanks to the JIT-compiler, missing features can be
written in Julia, and they perform on a similar level as a C-extension written for Python.

Multiple dispatch is a powerful programming paradigm when working with mathematics. It functions similarly to
how mathematical operators work, where the type of execution of an operation differs depending of the “types” of
its inputs. It is easy to produce clean code in Julia when defining additional methods of a function.

Python is mature with more third-party packages. As a general-purpose language, it is capable of almost anything.
Julia, on the other hand, is more focused and caters better to the niche. There is, however, the possibility of
enjoying the benefits of both languages. Julia can interface with Python code through the PyCall library and even
share data seamlessly between Python and Julia. Nevertheless, there is an overhead cost as we observe a slowdown
when using CBMOS in Julia through PyCall.

When programming in Python, much of the performance concern is handled by external libraries. For example, we
should write vector-like syntax using Numpy, rather than native for-loops. However, in order to take advantage of
Julia’s high performance, users need to be mindful of the design choices. Depending on the use case, devectorised
implementation might be faster than vectorised version. Experimentation is often needed in order to find the best
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available implementation.

The main drawback of using Julia is the time it takes for code to JIT-compile. Specially the “time to first plot”,
when plotting. For the initial hexagon cell configuration, the respective time to first plot is 7.749 s in Julia and
0.408 s in Python on a MacBook Pro with a 2.3 GHz Intel Core i9 processor. While adding the necessary depen-
dencies only makes a marginal difference in Python (0.485 s), it results in a much longer start up time in Julia
(18.118 s). The plotting libraries are also not as featureful as its Python equivalents. With changes to the workflow
these problems can be mitigated, but not removed. As we mentioned in Section 2.3, it is important to keep Julia
alive for multiple runs. In short, Python is a better language for fast prototyping.

Our results suggest that CbmosJulia performs much better than the Python counterpart. Though we think that the
results reflect the performance, there are a few improvements for future experiments. For instance, the parameters
of the force function could have been set such that the equations are less stiff, which in turn results in higher
accuracy with the same time-step. The running time is highly dependent on the number of cells. To reduce the
variance of the number of cells between the two versions at the sample final times, we could sample the final times
at time points between division peaks. Additionally, we could increase the mean division cycle time to leave a
time window where divisions are rare, which would decrease the variance even more. However, this will require
a different set of final times. For future research, the potential performance impact of other parameters such as
choice of force function could be investigated further.

We expect that there will be an increase of interest and adoption of the Julia language. Though there is room for
improvement especially with regard to the time to first plot, it stands out amongst the open-source programming
languages for the ease of use and its high performance.
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