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Abstract

This project is in collaboration with the company Schlumberger,
which provides technology in oil and gas industry. Great interest lies
in modeling the geological processes that are involved in the creation
of oil and gas reservoirs. These processes evolve over very large time
spans, making numerical simulations time-consuming. In this study
one of the key processes is considered, namely water flow in channels
and rivers, mathematically described by the shallow water equations.
The aim is to construct an artificial neural network that can predict
the steady-state solution of these equations, based on training data
generated by a numerical solver using finite differences. The numerical
solver is used to simulate the steady-state solutions for 2 700 different
randomly generated bottom topographies and initial conditions. The
result is used to train a feedforward neural network, which is then
used to predict the steady-state solution given a new unseen bottom
topography. The predictions, obtained from the neural network set-
ting, are found successful, supporting the necessity to continue the
work further, using even more advanced mathematical models.



List of abbreviations

ANN Artificial Neural Network
CNN | Convolutional Neural Network
FNN | Feedforward Neural Network
GPM | Geological Process Modelling
MSE Mean Squared Error
ReLu Rectified Linear Unit
SGD | Stochastic Gradient Descent
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1 Introduction

For years geologists have been studying the ground to find clues about how
the Earth ended up with with the forms and structures it has today. An
important tool to help understanding various natural events on and beneath
the surface of the Earth is the so-called Geological Process Modelling (GPM).
The goal of GPM is to recreate these events using computer simulations that
are based on the underlying physics. Schlumberger has developed their own
GPM software which covers three key processes regarding the creation of
oil and gas reservoirs: erosion, transport and deposition. The idea is to
simulate the processes over a long period of time to investigate whether the
position of a known reservoir can be recreated via numerical simulations.
Ideally it is possible to use this knowledge in new simulations to locate new
reservoirs. Figure 1 shows an example of a simulation of erosion, transport
and deposition, using the Schlumberger GPM software.

Figure 1: Example simulation from Schlumberger GPM software.

Geological processes are many, complex and often coupled. In addition
they evolve over thousands or hundreds of thousands of years, making sim-
ulations computationally expensive. To save time, different processes in the
GPM software are simulated separately. In this study we focus on one funda-
mental process in GPM, namely water flow in channels and rivers, commonly
described by the shallow water equations. The river flows are integrated in
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the complete GPM software by simulating the flow until it reaches a steady
state, at which it remains constant. New conditions are then introduced from
separate simulations of erosion and deposition and the algorithm is repeated
for a given time frame.

Current experience shows that the most time consuming part is the sim-
ulation of channel flow reaching its steady state. Therefore, accelerating this
part of the simulations is of vital importance. The aim of this project is, as
a proof of concept, to investigate the possibility of constructing an artificial
neural network (ANN) that is able to predict the steady sate solutions of the
1D shallow water equations, thus, avoiding time-consuming simulations.

2 Problem formulation

The goal of the project is to construct an ANN that can predict the steady
state solutions of the 1D shallow water equations, based on training data
generated by a numerical solver using finite differences.

3 Theory

3.1 The Shallow Water Equations

The shallow water equations form a nonlinear system of hyperbolic partial
differential equations describing the depth and average flow of a fluid. Ne-
glecting rain, infiltration, viscous forces and the Coriolis force, the 1D shallow
water equations in conservative form are given by

hy + (hu)x =0, (1)
(hu), + (hu2 + %ghQ)m = —gh (b, + S¢),

where h is the water depth, u is the average velocity of the water, g is the
gravitational acceleration and hu is the discharge or flow. The source term in
the second equation includes the bottom slope, b,, and friction, S¢. Friction
can be expressed in various ways [4]. Here a friction law from the Manning-

Stickler’s family is used:
2ufu]

Sf:n h4/3, (2)

where n is the Manning’s roughness coefficient. In conservative form the
shallow water equations constitute in fact a nonlinear system of conservation
laws, representing conservation of mass and momentum [6].



For convenience, (1) is written in the more compact form
Ui+ F(U), = R(U), (3)

where

U= (hhu) , FU) = <hu2 ngiﬂ) and R(U) = <—gh (b2+5f)) - @)

In general, hyperbolic equations have wave-like solutions, propagating with
characteristic wave speeds. For the shallow water equations these character-
istics are determined by the eigenvalues of the Jacobian matrix

A=F(U) = ( 0 21u) : (5)

gh — u?
The eigenvalues of A are

A =u—+/gh and X =u++\/gh. (6)

Thus, the waves move with non-constant wave speeds and will deform over
time, possibly creating shocks [6]. This means that when solving the shallow
water equations numerically, the method of choice must be able to handle
the discontinuities arising from shocks.

3.2 Boundary Treatment

Another challenge lies in specifying correct boundary conditions, which is
not straightforward due to the non-linearity. In linear theory the number of
boundary conditions is the same as the number of eigenvalues of the Jaco-
bian matrix. Moreover, the sign of the eigenvalues determines whether the
conditions are imposed on the left or the right boundary points (in 1D). With
non-constant eigenvalues the sign may differ both in time and space. To help
with the boundary treatment a ratio called the Froude number is introduced:

|ul

Fr=—. 7

¥ g
The Froude number corresponds to the Mach number in gas dynamics [6].
If the Froude number is less than one the flow is said to be subcritical. In
this regime the water is generally deep and the flow is slow. Imposing the
correct boundary conditions in the 1D case means specifying one condition
on the left and one on the right boundary. If the Froude number is greater
than one the flow is supercritical. Here the flow is faster than the gravity
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driven characteristic wave speeds, and both boundary conditions should be
imposed at the same boundary.

The difficulties of the boundary treatment are associated with the fact
that the Froude number is local in space. Consequently, in some situations
the flow jumps between the two different regimes, depending on the bottom
topography. When this happens the flow is called transcritical. In this study,
the boundary conditions are imposed in the following way (if nothing else is
specified): a non-homogeneous Dirichlet boundary condition for the discharge
is always imposed at the left boundary. Next, the local Froude number at the
left boundary is observed. If it is less than one then no more conditions are
set at this boundary. If it is greater than one then an additional boundary
condition in form of a homogeneous Neumann boundary is used for the water
depth. Then the Froude number at the right boundary is observed. If it is
less than one then a homogeneous Neumann condition for the discharge is
imposed. Otherwise no boundary conditions are imposed.

4 Numerical Discretization Method

We discretize the one-dimensional shallow water equations, given by (1),
with a MacCormack scheme. The computational domain is discretized using
equidistant grid points, given by

gj=(-DAz, j=1,.,M, Ag=-—"""1

M1 ®)

where x, and z; are the right and left boundary points, respectively. The
MacCormack method consists of two steps and when applied to (3) it takes
the following form:

* n At" n n n n

J J J
1 JANAS
unr 1 _ Ur U*

j+ N 5( it Ax

(9)

(F(U;) - F(U;_)) + At”R(U;)> ,

where the subscript 7 denotes the discrete spatial point and the superscript
n the discrete time. Furthermore, an adaptive time step At™ is used and set
to fulfill the Courant-Friedrichs-Lewy (CFL) condition, which is a necessary
condition to guarantee convergence of the discrete method. For the one-
dimensional shallow water equation, the CFL condition is given by

€ = [lut Vo] £E < Cun (10)



where C' is the dimensionless Courant number and C,,., = 2 is the upper
limit [7]. The adaptive time step is chosen as

Ax
[um + Vgh™| )’

A" = Chpe - (11)

where Cl,. is set to 0.5.

The first step in (9) is the so-called predictor step, where a temporary
update of the solution is computed. The spatial derivative of the flux term
F| given by (4), is here discretized using a forward difference approximation.
The second step is the so-called corrector step, where the predicted solution
is improved. Here, when approximating the spatial derivative of F', we use a
backward difference formula. In this method, one could alternatively switch
the backward and forward difference approximations, such that the back-
ward difference approximation is used in the predictor step and the forward
difference in the corrector step. For sufficiently smooth solutions the Mac-
Cormack method is of second order accuracy [5]. An advantage with this
method compared to some other finite difference based methods, such as the
Lax-Wendroff method, is that the MacCormack scheme does not include any
computation of the Jacobian matrix.

A drawback of the MacCormack method is that it only gives reliable
results when the solution is sufficiently smooth. Hence, spurious oscillations
can arise in the solution close to discontinuities, or very sharp slopes. For
general systems of nonlinear equations, it is almost impossible to obtain the
stability results that are necessary to prove convergence. However, it has
been found that by restricting the total variation to not grow with time
increases the stability of the solution [5]. These methods are called Total
Variation Diminishing (TVD) methods and limit the slope or the flux near
discontinuities so that no spurious oscillations arise in the numerical solution.
A modification of the standard MacCormack scheme is made by adding a
TVD term, referred to as a TVD-MacCormack method. For details about
the TVD term we refer to [2].

We use the standard MacCormack method and the TVD-MacCormack
method for solving a test problem similar to the one presented by LeVeque
[6]. We use MATLAB when implementing these numerical discretization
methods and when setting up and solving the problem. The initial water
height for the problem is given by ho(z) = 1 + 0.4e75*" and is shown in
Figure 2a. The velocity of the water is initially zero in the whole domain.
We set the gravitational acceleration to ¢ = 1 m/s* and the bottom to a
flat surface, neglecting any friction. The initial hump evolves into a right-
and a left-going wave with time. The problem is solved until the final time



T = 3 s. The result of the water height and discharge from the standard
MacCormack method is shown in Figure 2c and 2d. It can be observed that
there are two sharp slopes in the solution, which have given rise to spurious
oscillations. Figures 2e and 2f show the corresponding result from the TVD-
MacCormack method. Using this method the oscillations have disappeared,
which indicates that the TVD-MacCormack method can successfully capture
shocks.
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Figure 2: A test problem with an initial hump in the water height that
evolves into a right- and left-going wave. The initial water height and dis-
charge is shown in (a) and (b), respectively. The numerical solution with
the standard MacCormack method after 3 s is presented in (c) and (d) and
the corresponding result using the TVD-MacCormack method is shown in
(e) and (f).
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5 Data Generation

In order to learn an ANN, we need training data. In this study we generate
numerous training data sets as follows. The training data consists of differ-
ent randomized one-dimensional bottom topographies and initial conditions,
together with the corresponding steady-state solutions of the water depth
and discharge. In total, a set of 2 700 different bottom topographies are
generated by the following principle: the domain is chosen to be a channel of
length L = 100 m and divided into ten sub-domains. The bottom elevation
at the left boundary is fixed to b = 0.5 m. At each sub-domain a random
slope is introduced with probability p; = 0.9. Let v; be a sample from an
uniform distribution in the interval (0,1). A slope ax, k =1, ..., 10, is chosen
as ar = —vy - b/ L, thus preventing the bottom elevation from being nega-
tive. Additionally, at each sub-interval, except for the left- and right-most
sub-interval, a hump is generated with probability ps = 0.8. The height of
the hump is v, /1%, ¢ = 2, ...,9, where [ is the length of the sub-interval.

The initial state is always chosen as a surface at rest, that is hg + b =
constant, where the depth is randomized according to hy = 0.8 + v;. The
initial discharge is set to zero everywhere except for at the left boundary,
where the inflow is chosen as (hu)y = 0.8 + 2v;. The Manning’s roughness
coefficient is fixed to n = 0.033 throughout all tests.

Since there are no analytic solutions available to these randomized condi-
tions, the corresponding steady states are simulated using the TVD-MacCormack
method, up to the final time 7" = 150 s. Ultimately, the result of the proce-
dure described above is 2 700 varying bottom topographies with the corre-
sponding steady state solutions of the water depth and discharge.

6 Artificial Neural Network

6.1 Network Architecture

A feedforward neural network (FNN) is designed in PyTorch to handle data
from three variables with 201 data points each. This is to match the 201
grid points in the numerical scheme when generating the training data. The
motivation behind using 201 grid points in the spacial discretization is that
it was found to be sufficiently accurate and fast. Additional accuracy could
be achieved by increasing the number of grid points above 201, but was
irrelevant in our one-dimensional case. The input for the network consists
of the slope of the bottom topography, the initial water depth and initial
discharge, i.e. b,,hg and (hu)g, as one vector of 603 values. The output of
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the network contains two variables with 201 data points each, corresponding
to the steady state water depth and discharge. Thus, the output vector has a
length of 402 data points. When the number of grid points in the numerical
scheme were to be changed, a new network would need to be trained. For m
grid points, the network architecture would have an input of length 3 x m
and an output of 2 x m.

Fully connected feed forward Neural Network with two hidden layers

first hidden layer second hidden layer

outputygo

inputgpa

' Wy W4
(603, 402] [402, 201] [201, 402]

Figure 3: Visualisation of the feedforward neural network. Two hidden layers
are used.

6.2 Activation Function

The activation function used in both hidden layers of the FNN, chosen in
this study, is the Rectified Linear Unit, more commonly known as ReLu. In
the context of neural networks, the ReLLu activation function is a function
defined as the positive part of its argument.

.fReLu(m) - {E+ - {

>0
v r=T (12)
0 otherwise.

6.3 Optimizer

The optimizer of choice is the Adam optimizer, an alternative to the ”classi-
cal” stochastic gradient descent (SGD) and the weights are updated through
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backpropagation. The name Adam is derived from adaptive moment esti-
mation [1]. The main difference between Adam and SGD is that Adam
maintains a learning rate for each network weight when the SGD has a static
learning rate for the whole network.

6.4 Loss function

Mean squared error (MSE) is used as loss function to calculate the loss at
each iteration. The mean squared error penalizes outliers due to its quadratic
nature.

7 Results

7.1 Convergence Analysis of the Discretization Scheme

The TVD-MacCormack scheme, presented in Section 4, is first verified on two
test problems with known analytical steady-state solutions, presented in [4].
The computational domain is the same in both test problems and consists
of a one-dimensional channel of length 25 m. The bottom topography is a
single hump without friction, given by

. (13)
0 otherwise.

b(a) = {0.2 —0.05(z— 10> 8Sm<az<l12m,
The water surface level and the water discharge are given as initial conditions
and set to h(z) + b(x) = hy, where hy is 2 m in the first test problem and
0.33 m in the second problem. The initial discharge is set to zero everywhere
except for at the left boundary. The boundary conditions are imposed as

{(hu)(x) = Qo r =0 m, (14)
h(z) = hy r =25 m,

where qq is set to 4.42 m/s? and 0.18 m/s? in the first and second problem,
respectively. The first test problem is an example of subcritical channel flow
and the second is an example of transcritical flow.

The numerical solutions are compared to known analytical solutions, ob-
tained from the FullSWOF package [3]. FullSWOF is developed in C++ and
contains a limited amount of analytical solutions to the shallow water equa-
tions. Figure 4 shows the numerical and analytical steady-state solution for
the two test problems. The numerical solution is updated until time 7" = 250
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s and 801 grid points are used. The numerical solution reaches the analytical
steady-state solution in both cases, up to a certain accuracy.

2.0
_ — 0.4
E E
a5 )
+ + 0.3
= —— Analytical sol. = —— Analytical sol.
@ L0 —— Numerical sol. 0.2 —— Numerical sal.
E —— Bottom E —— Bottom
w w
u 0.5 v (.1
“ 0.0 /" \ . | o0 . . . . .
0 5 10 15 20 25 0 5 10 15 20 25
x [m] x [m]
(a) (b)

Figure 4: Water surface level at steady state for two test problems. The
numerical solutions coincide with the analytical solutions. (a) Sub-critical
flow. (b) Trans-critical flow.
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Figure 5: [?-norm of the error as a function of number of grid points for the
first test problem. A polynomial fit to the data is also made, which gives the
convergence rate («) of the TVD-MacCormack method for this test problem.

We make a convergence rate analysis for the first test problem (see Figure
4a). Four different grid-sizes are used, m = 101, m = 201, m = 401 and
m = 801 points. The result in seen in Figure 5, where the [>-norm of the
numerical error is plotted against the grid size. The plot is in logarithmic
scales. The convergence rate of the TVD-MacCormack method is estimated
by using linear regression with the MATLAB-function polyfit. The rate is
estimated to be 1.6744, and the slope is plotted as the red line.

7.2 FNN performance

Ten samples are removed from the training data set and are used for vali-
dation. The rest of the data is divided into training and test data with an
89% to 11% ratio. Figure 6 shows the training and test loss in the training
process of the FNN. The network is trained for 1 000 epochs with a batch
size of 100 and a learning rate of 0.01. The training and test losses approach
zero with increasing number of iterations.
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Figure 6: Training and test loss for the FNN over the training process.
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Figure 7: Three examples of a numerical steady-state solution and predicted
solution from the FNN. Both the water surface level (left) and the related
water discharge (right) are shown.

We test the performance of the FNN on the validation data set consisting
of ten different bottom topographies and the corresponding numerical steady
state solutions. Figure 7 shows the FNN predictions of the steady-state
solutions for three of these. The numerical solutions are also plotted in the
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figures as references for the "true” solutions. The figures in the left column
show the water surface level and the figures in the right column show the
water discharge. It can be seen that the predicted steady-state solutions from
the FNN almost coincide with the numerical solution in all three cases.

8 Discussion

In this study a feedforward neural network is trained to predict the steady-
state solution of the 1D shallow water equations, given a specific bottom
topography and initial state. The training data is based on numerical so-
lutions using a TVD-MacCormack scheme with shock-capturing properties.
The numerical discretization method is verified on a simple test problem,
where analytical solutions of the steady states indeed are available. An anal-
ysis shows that the convergence rate is close to second order. This is what
you expect since the standard MacCormack scheme is of second order and
adding the TVD term comes with the cost of a slight decrease in accuracy.
The scheme is found to be stable for the randomized bottom topographies
and initial states used in this work.

The steady-state predictions from the FNN are of relatively good pre-
cision. Unfortunately, nothing can be said about the error of a prediction
a priori. Standard numerical discretization methods have the advantage of
a priori estimates that ensures that the error is bounded and decreasing
with higher resolution. The only way to know the error of predicted steady
states is to compare them to simulation results, which counterfeits the whole
purpose of the project. It is also important to emphasize that the high per-
formance of the neural network is related to a very specific setting being
targeted. Even though randomness is introduced in the bottom topogra-
phies and initial states the conditions are still similar (see Section 5). Also
the Manning’s roughness coefficient is not randomized. The network is not
tested on a completely different bottom topography, and doing so might lead
to a less satisfactory accuracy. This problem can be solved by providing
the network with a wider range of bottom topographies and allowing more
variety in the initial states. The downside is that a larger training data set
is more time-consuming to produce and the time to train the network will
also increase. We recall that the system of equations is currently solved al-
most 2 700 times just to predict the steady-state for a few problems. Then
again, once the training data is available and the network is trained, steady
state predictions are obtained almost instantaneously. This trade-off must
be considered.

The next step of this work would be to expand the model to two or three
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spatial dimensions. A tolerance should be implemented so that the final time
solution is ensured to be the steady state solution. Only then meaningful run
time comparisons between the numerical solver and the neural net approach
can be made. Right now the final time is just chosen by observation. An idea
is to compute the [2>-norm of the difference between the current solution and
the previous time step and check if it is less than the given tolerance. Prefer-
ably, a wetting/drying algorithm should also be added to the scheme, though
care must be taken so that the conservation laws still hold. Furthermore, we
suggest to investigate the use of a convolutional neural network (CNN), due
to its ability to deal with high dimensional input data. In two dimensions,
the number of grid points is practically squared compared to one dimension.
A relatively simple feedforward neural network is used in this project and it
still performs well. Nevertheless, it would be interesting to compare to the
performance and training time of a CNN.

Higher dimensions enable more variety of the bottom topographies, which
is needed to generalise the training data. This is not done within the current
study due to time restrictions. Obviously the 1D model is not realistic for
most real-world problems. The major challenge of expanding to higher di-
mensions lies in how to handle problem dependent grids. In 1D the very same
grid could be used for every different bottom topography and this problem
was completely avoided.

9 Conclusions

The result shows that the feedforward neural network can be successful in re-
producing the solutions of a standard numerical discretization method. This
implies that a potential time save can be made by avoiding long simulations
and instead predicting the steady state solutions instantly, with just infor-
mation about the bottom topography and the initial state. A challenge lies
in generalizing the model, and doing so will require a very large amount of
data to be generated. Since the numerical discretization method is already
reasonably fast in solving the shallow water equations in 1D, we believe that
our approach is more viable in 2D or 3D. In applications where error esti-
mates are essential it is better to go with a regular numerical discretization
method. In order to compute posterior estimates, simulation results must
be available as reference solutions. However, if simulated steady states are
available then the perdictions from the FNN are worthless, since they will be
of worse quality.

It is possible to develop a program generating more sophisticated bottom
topographies than what is presented in our work. Such program should also
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be capable of producing steady state solutions, provided that the numerical
discretization scheme is stable. With strong CPU’s, large training data sets
could be quickly generated. This makes our approach very interesting and
there is a seemingly great potential in this field.
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