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Abstract

The aim of the project was to develop and deploy deep learning models and
a pipeline, aiding the segmentation of liver MRI-scans by creating automated
suggestions. To be useful, the models should generalize well between datasets.
This was done using deep learning and the U-Net architecture, building upon
the work described in Langner et al[1]. The networks achieved a Dice score of
0.971 for the volume segmentation and a Dice score of 0.933 for the fat-fraction
segmentation. The results suggest a strong ability to generalise between datasets
produced by different MRI-devices and imaging protocols, if a few patient scans are
manually segmented and moved to the training set. For the volume segmentations,
just moving one patient scan improves the Dice score to 0.957, from 0.493 when no
patient scans were moved. For the fat-fraction segmentations, moving one patient
scans improves the Dice score to 0.876, from 0.342, when no patient scans were
moved.

1 Introduction

In drug development it is necessary to quantify treatment effects to support decision making. Antaros
Medical is a strategic development partner to the pharmaceutical industry that uses medical imaging
techniques to help in this process. An important and sometimes time consuming part of image
analysis is to create segmentations in the acquired images and it is therefore valuable to facilitate this
procedure by automation.

1.1 Project Aim

The aim of the project is to build a deep learning pipeline and train two networks for liver segmentation
and calculation of liver volume and fat-fraction from Magnetic Resonance Imaging (MRI) scans.
The envisioned end-goal product is one that can be fed with scans from new studies, with different
devices and imaging protocols and segment it to a degree of satisfaction high enough for shipping
after minor or no revision from a human operator. It is also important for the pipeline to be easily
adaptable to new segmentation tasks.

1.2 Fatty liver disease

The liver is an organ found in the abdomen which performs an array of functions that support
metabolism, digestion, detoxification and vitamin storage. Fatty liver disease is the name of a
condition where fat builds up in the liver, it can be subdivided into two categories, alcoholic and
nonalcoholic fatty liver disease. By analysing scans created by medical imaging, one can diagnose
and monitor the progression or regression of a disease. This methodology can also be used to conclude
if the liver has an abnormal fraction of fat depots or volume, where a fat-fraction of over 5.56% is
considered unhealthy, see [2].

1.3 MRI

A commonly used method for medical imaging is MRI. By the use of strong magnetic fields and
radio waves, the hydrogen protons in the tissue are excited and then themselves emit radio signals,
which can then be captured by sensors. The information is then used in a computer to generate an
image.

When creating a volumetric scan, one usually collects 2D images with a given resolution e.g. 2 mm
height and 2 mm width per pixel and stacks these on top of one another, creating an "image stack".
With a given slice thickness, indicating the distance that the pixel represents in the third dimension
e.g. 5 mm, this yields a voxel, which in this case is 20 mm3. Multiplying this value with the number
of voxels segmented as liver gives the volume of the liver, which makes it possible to determine the
volume of a liver.

By adjusting the imaging protocol of the scanning device, one can excite the hydrogen nuclei of
water and fat by using a frequency that is in resonance with their spin precession. The water and
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fat molecules have a slightly different spin frequency. Utilizing multifrequency measurements and
the spin frequency, one can create two different images for water and fat. This is done by looking
at how the response from the tissue changes i.e. how the vector sum of the spin changes over time,
to find the proportion of fat and water in a given voxel. By combining the two images, one can
create a composite image called a fat-fraction image, where each pixel in the image has a value
that corresponds to the percentage of fat in that pixel, also known as fat-fraction. The pixel values
segmented as liver fat are then used to determine the fat percentage by taking the mean or median
value of the segmented pixels belonging to the positive class, i. e. the liver.

2 Deep Learning Background

2.1 Convolutional Neural Networks

A basic structure in an artificial neural network is the fully connected layer, in which weights are
associated with every possible combination of nodes between two layers. This becomes a problem
when multiple layers are added, as the number of parameters can reach hundreds of millions, which
becomes exceedingly expensive to compute. A CNN solves this by assuming that the information
needed for making a decision often is spatially close and thus, only takes the weighted sum over
nearby inputs. It also assumes that the networks’ kernels can be reused for all nodes, hence the
number of weights can be drastically reduced. To counteract only one feature being learnt per layer,
multiple kernels are applied to the input which creates parallel channels in the output. Consecutive
layers can also be stacked to allow the network to find more high-level features. This means that the
network, for example, can detect a liver-shaped object. For every layer added, the receptive field, the
region of the image that contributes information, grows depending on the kernel size allowing it to
find larger patterns to use for segmentation.

CNN layers are commonly mixed with pooling layers, which allows more kernels, that finds additional
high-level features without increasing the computational load. This is done by a non linear down-
sampling, e.g. taking the maximum value of a 2x2 square and passing that signal to the next layer.

If a network is to be used as a segmentation network, it is necessary to up-sample the most high level
features, making a pixel-to-pixel comparison possible between the input and output of the network.
This can be done with transposed convolution which works like regular convolution but instead takes
one node value and sends it through a kernel of weights to up-sample it.

2.2 U-Net

The U-Net is a popular networks architecture for medical segmentation (cf. [3][4][5]). It consists of
two parts, the contracting part (or the encoder/downward part), which extracts high-level features
and the expanding part (or the decoder/upward part), decoding the high-level features to be used in
segmentation. Both parts consist mainly of convolutional layers, mixed with pooling layers for the
contraction and transposed convolution layers for the expansion. What is unique with the U-Net is
that it connects corresponding convolutional blocks in the encoder and the decoder via long skip
connections (also called bridges). This allows more local information, which would otherwise be lost
deeper down, to skip the bottleneck. The result is that the U-Net can use both more high-level features
as shapes and local information as texture for the classification of a specific pixel. The implementation
of the U-Net as shown in [1] differs from the original in that it uses internal padding, which prevents
the kernel size from shrinking the feature maps. This allows us to make the assumption that every
pixel, even the border regions can be segmented, hence the output will have the same height and
width as the input, which in turn allows us to ignore the cropping in the long skip connections that
was used in the original U-Net implementation[6].

2.3 Dropout

Dropout is a regularisation technique, where certain nodes are randomly, completely ignored in
training to reduce the chance of a network over-fitting. The idea is that the nodes "take turn" trying
to minimize the loss function, which in theory means that the network learns not to over-rely on a
few nodes. Dropout could also help to reduce the risk that some layers are trained to compensate for
the mistakes of others, so-called "co-adaptation", which typically does not generalise very well. Our
U-Net implementation uses dropout in the two deepest convolutional blocks.
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Figure 1: The figure illustrates the U-Net architecture.

2.4 Transfer Learning

One inherent problem in deep learning, and in almost all applications of machine learning, is the
reliance on large amounts of data. Without enough data, the millions of parameters in a deep learning
architecture can not be properly updated from training and it would be hard to find usable high-level
features. Instead, the network would find solutions that over-fit to the training data. Transfer learning
solves this problem partially, by using pre-trained weights on tasks not necessarily similar to the
one at hand. The pre-trained weights are generally trained on datasets with millions of images e.g.
ImageNet, containing around 14 million images in 1000 different categories, giving us networks like
the VGG11[7]. The features extracted from such a wide variety of images and classification tasks
have the potential to help in segmentation problems. Even if the images are very different from the
task at hand, extracting lines and edges and objects of a certain shape, e.g. a circle is useful to most
networks. This is not a novel approach and has been explored in previous works[8].

2.5 Volumetric slicer and/or V-net

Often medical imaging techniques yield a 3D volume scan. U-Net, however, has a major limitation
to work only with 2D information so that every slice is segmented separately and then needs to be
stacked together into a volume. In order not to waste the 3D information, the V-net[9] was developed,
which uses three dimensional convolution instead. The results from similar studies to ours, such as
[1] and [10] suggest the V-Net is often inferior to the U-Net. Instead we explored a compromise by
continuing to segment a 2D slice but instead of only feeding the network the slice to be segmented, the
neighbouring slices were also added to the input as extra channels. This method was used successfully
by the winning team in Liver Tumor Segmentation Challenge as can be seen in [10].

2.6 Short skip connections

Kaiming et al.[11] showed that among other things that short skip connections could be added to the
VGG networks in order to combat the problem of vanishing gradients and to smooth the optimisation
problem. Adding short skip connections also makes the network more flexible by allowing it to
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dynamically choose which convolutional blocks to utilise. As the U-Net is closely related to this
family of networks it is easy to add the short skip connections over the convolutional blocks.

2.7 Augmentations

Augmentation is a common technique in deep learning, where the data is manipulated in different
ways to create more data out of an otherwise limited data set. For example, an image may be flipped
90 degrees to emulate a new image, meaning the network has more data to train on and could, in
theory, be invariant to the orientation of the input. Augmentation serves to make the network less
prone to over-fitting, typically implying better generalisation. One augmentation technique used by
our pipeline is elastic deformations, as described in [12], where a grid of a fixed amount of nodes is
overlaid onto the image and then randomly deformed so that the underlying image is interpolated
to follow the grids deformation. This technique has the ability to create unique, plausible data in
contrast to many other augmentations which often does not change the shape of the objects in an
image.

3 Datasets and Implementation

3.1 Datasets used

The two datasets mainly used were from two different studies. Both were produced with MRI-
imaging, described in 1.3, run along the transversal plane. The datasets originated from two different
scanners, Philips 1.5T and GE 3T. For the Philips 1.5T scanner the THRIVE sequence was used for
Liver Volume, generating 55 slices with a slice thickness of 5 mm, a width and height of 2mm. The
Liver fat for the Philips 1.5T (dataset 1) scanner’s images had a slice thickness of 6 mm with 34 slices
and pixels with 1.95mm height and width. For the GE 3T (dataset 2) scanner the water-fat sequence
was used for Liver Volume, generating 28 slices with a slice thickness of 5 mm, a width and height of
1.5mm. The Liver fat for the GE 3T scanner’s images had a slice thickness of 10 mm with 25 slices
and pixels with 1.72mm height and width. This results in quite different scans, as can be seen in
Figure 2. At the start of the project, 11 % of the data was left aside as test data, only to be used when
the best architecture and set of hyperparameters were found.

Figure 2: Volume scan from dataset 1 (left) and dataset 2 (right) after harmonising spacing.

It is also important to note that when segmenting liver volume, the entire area which can be considered
to be part of the liver is segmented. In contrast to when segmenting the liver fat images, where the
human operators are instructed to maintain a certain margin to the border of the liver, to avoid partial
volume effects, to ensure that no pixel contain both liver fat and background.
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To ensure that the pipeline easily can be applied to different tasks an additional set is used. This
set contained CT scans from the liver, abdomen and thigh, where abdomen and thigh had multiple
classes. The liver was to be segmented as liver and background. The thigh had fat tissue, connective
tissue, muscle tissue and background and lastly the abdomen had visceral fat, subcutaneous fat and
background. This dataset only contained one 2D slice per patient, with 2151 patients.

3.2 Data processing

Since the data is volumetric and the U-Net processes 2D images we need to separate the patient
volumes into slices. This means that the volumes need to be sliced along a chosen axis. There are
three axes to choose from; transversal, which reads a body horizontally from head to toe, coronal,
front to back, and sagittal, left to right. All types of orientations have been tried, but transversal has
shown to be vastly superior.

For the network to better be able to handle scans from different MRI devices and imaging protocols
that differs in properties, such as intensity ranges or resolution, the data can be processed to appear
more similar. Hereafter we describe the techniques used in this study.

3.2.1 Resolution discrepancies

The two datasets contained scans taken with different pixel spacing, meaning that the actual distance
between two neighbouring pixels was dissimilar in different images. By zooming into or out of
the images with first order spline interpolation the pixel spacing could be harmonised. The pooling
layers divides the width and height of the following tensor with two and we have four pooling layers,
hence the input images side lengths need to be evenly dividable with 16. We chose 256x256 to be
the number of pixels in our input images as that was the closest numbers dividable with 16 to the
largest images (we chose the largest ones since we rather up-sample then down-sample to avoid losing
information). If the image was not 256x256 after zooming it was padded (or cropped) to that size.
Zooming was not applied in the third dimension since it resulted in too much information loss. This
created some problems for the liver volume network, since adding neighbouring slices as spacing
between slices was noticeably different in the two datasets. This resulted in only one neighbouring
slice being added on each side when segmenting with the liver volume network compared to four for
the fat-fraction network.

3.2.2 Normalisation

To make the intensities of the pixels more aligned, min-max normalisation and a method which we
call "clipping" were used on the scans.

Normalisation can be done in three ways, where the maximum and the minimum pixel intensities
are picked from either individual slices, the entire image stack per patient or the entire collection of
patients are considered. This is referred to as slice-wise, patient-wise and global normalisation. The
min-max normalisation, as described in 1, when applied all intensities are confined to an interval
from 0 to 1 as can be seen in the following equation,

yi =
xi −min(x)

max(x)−min(x)
. (1)

Clipping, in this context, is a technique where a certain percentile of the highest or lowest intensity
pixels are "clipped" to the value of a pixel just below or above a given threshold, which removes
outliers.

3.3 Evaluation metrics

To evaluate the performance of the networks, evaluation metrics are needed. In order to estimate liver
volume and liver fat percentage, the following methods were implemented.

For liver volume, the number of segmented pixels were counted per patient. The fat-fraction is a bit
more complicated. The value comes from the mean/median pixel value of the fat-fraction scan in the
liver class. The discrepancies between the predicted and the ground truth of these values were then
calculated for evaluation. The 95% Limit of Agreement was also used and describes where the 95%
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boundary of the positive and negative error, based upon the mean error, lies. It indicates how the the
errors are biased, towards either under- or over-segmentation. The 95% LoA as described in 2 and
3 can be calculated in the following equations, where µ is the mean value of the error, and σ is the
standard deviation of the errors,

LoAupper = µ+ 1.96σ, (2)

LoAlower = µ− 1.96σ. (3)

Other metrics used, which are also common for segmentation of medical images, were the
Sørensen–Dice coefficient (Dice) and Mean Absolute Error (MAE). Although all metrics can be used
for evaluation, Dice, as described in 4, is the one most present in papers on the topic, therefore it was
primarily considered when evaluating the results. It computes the overlap in the positive class, X of
the network’s prediction, Y and ground truth as

Dice =
2 | X ∩ Y |
| X | + | Y |

=
2TP

2TP + FP + FN
, (4)

where TP means "True Positive", FP means "False Positive" and FN means "False Negative".

3.4 Run setup

The testing of different models and hyperparameters where done in three steps.

• All model changes where tried individually and run with five-fold cross-validation for 75000
iterations and then compared with the baseline U-Net.

• The results were used to determine which improvements were chosen for the second, more
rigorous validation step where each combination of these changes were tried. This time with
10-fold cross-validation and for 100000 iterations.

• The best performing network was chosen to process the test data

The results from the last step will be the focus of the results part, while most of the earlier results
where excluded in order to limit the extent of the report.

Unless stated otherwise, cross entropy was used as a loss function while Adam, with the implementa-
tion described in[13], was used as the optimiser. After the first series of tests, the hyperparameters
were set accordingly, learning rate = 0.0001, β1, which is the exponential decay rate for first moment
estimates in Adam was set to 0.9, β2, which is the exponential decay rate for the second-moment
estimates in Adam was set to 0.999. σ, which is the the strength of the elastic deformations was set
to 8 and 64 grid points were used for the deformations and finally batch size was set to 1 and dropout
was set to 0.5.

All runs in testing and training were performed on three Dell 5820 Precision Tower desktops each
equipped with an Intel® Xeon® W-2133 3.6 GHz processor and an Nvidia GeForce RTX 2080 TI
graphics card with 12 GB memory.

3.5 Deployment

The best performing liver volume and fat-fraction networks were saved onto a computer acting as
server. Other computers on the same network are then able to send raw datasets to the server, where
it is preprocessed and fed to the network so that a prediction is made. The preprocessing is then
reversed and the file saved in .vtk format. When finished, the server returns the segmented data to the
sender. This is enabled by the use of ØMQ, which is an asynchronous messaging library available
in Python. The absolute majority of the time it takes to make the inference runs are spent zipping,
unzipping and preprocessing the raw data while the inference itself takes very little time.
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4 Results

In this section we present the results of changes in the method that actually improved our measures in
order to keep the size of the report reasonable.

4.1 Liver volume network

In Table 1 we see that using transfer learning, partial volumetric information with the adjacent slices,
and skip connections achieved among the best. It was chosen as the best one since it was the most
stable. Figures 3, 4, 5 and 6 show the differences in performance between the best and the base U-Net.
An example of a representable segmentation is seen in Figure 7.

Figure 3: The best model, in orange, using both transfer learning as an encoder and adding one slice
above and below as input to the network, compares to the basic implementation of the U-Net, in blue.

Figure 4: The best model, in orange, using both transfer learning as an encoder and adding one slice
above and below as input to the network, compares to the basic implementation of the U-Net, in blue.

For the volume predictions of the base network as seen in Figure 5, the mean value is 1.6% off
and the median is 0.9%, while the maximum outlier is 6.5% off. The 95% Limit of Agreement for
this network is +4067 and -4867, which means that it is equally biased to making optimistic and
pessimistic predictions.
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Figure 5: Model prediction of patients liver volume when evaluated on the test data using the base
U-Net.

For the volume predictions of the best network as seen in Figure 6, the mean difference is 1.1% and
the median is 1.5% off and the maximum outlier is 5.2%. The 95% Limit of Agreement is +5506 and
-1815, hence it can be concluded that it is quite biased towards optimistic predictions.

Figure 6: Model predictions of patients liver volume when evaluated on the test data using our best
implementation.
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Figure 7: Unsegmented MRI scan on the left and the proposed liver volume segmentation from our
model. Where purple is overlap when compared to the ground truth, red is under-segmentation and
blue is over-segmentation. Here, a fairly representative segmentation is shown.

4.2 Fat-fraction network

In Table 1 we can see that using all improvements reached the same Dice as leaving short skip
connections out, but since the Dice curve achieved more stability we preferred using all improvements.
In Figures 8 and 9, the differences in Dice are shown between the optimal and the base U-Net during
testing.

Figure 8: Dice score for the best model used on test data in comparison with the base network, the
difference in highest Dice is 0.08, which corresponds to about 10% less error but the best network is
also much more stable.
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Figure 9: MAE for the best model used on test data in comparison with the base network.

The fat-fraction values for the basic U-Net seen in Figure 10 gave relative mean differences of 1.5%
and had three outliers that don’t match the ground truth with differences of one percentage point.
Important to note is that one patient would have been predicted to not have fatty liver disease, where
as ground truth says it has fatty liver disease since the fat-fraction is larger than 5.5%. The Limit of
Agreement is +6.521 and -7.284.

Figure 10: Model predictions of median liver fat-fraction when evaluated on the test data using the
base U-Net. Three patients in the test data has their predictions differed by more than 5%.

The fat-fraction values for the best U-Net seen in in Figure 11 gave relative mean differences of
0.4% and one outlier, which had a relative difference of 5%. This patient had a large cyst which was
incorrectly segmented, an occurrence previously unseen to the network since it is only present in the
test data. The Limit of Agreement is +1.983 and -1.745.
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Figure 11: Model predictions of median liver fat-fraction when evaluated on the test data using our
best implementation. The median liver fat differed by 5% from the ground truth for only one of the
patients.

4.3 Combinations of methods that improved the results

Methods used Highest Dice, volume Highest Dice, fat-fraction

Base 0.966 0.922
E 0.965 0.925
V 0.968 0.930
R 0.965 0.923
T 0.968 0.929

E + V 0.966 0.931
E + R 0.966 0.926
E + T 0.969 0.931
V + R 0.967 0.931
V + T 0.971 0.931
R + T 0.970 0.928

E + V + R 0.968 0.932
E + V + T 0.970 0.933
E + R + T 0.970 0.931
V + R + T 0.971 0.931

E + V + R + T 0.971 0.933

Table 1: Combinations of methods that previously showed improvements. E = Elastic deformations,
V = Partial volumetric information, T = Transfer learning, R = short skip connections.
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4.4 Generalisation between datasets

Number of patient scans moved Dice, volume Dice, fat-fraction

0 0.493 0.342
1 0.957 0.876
3 0.955 0.853
5 0.963 0.895

10 0.968 0.908

Table 2: Dice score as patient scans from dataset 2 are manually segmented and moved to dataset 1,
when training on dataset 1 and evaluating on dataset 2.

To test the networks ability to generalise we used one of the datasets for training and one of the
datasets for evaluation. We then moved a number of patient scans from the evaluation set to the
training set. In Table 2 we see that a network trained on dataset 1 generalises very poorly to dataset 2.
However by manually segmenting a few patient scans in dataset 2 and adding them to dataset 1 the
Dice scores are vastly improved.

4.5 Other datasets

With minor changes to the data preprocessing our pipeline could create models, which reached a
Dice score of 0.968 for liver segmentation, 0.991 for abdomen segmentation and 0.994 for thigh
segmentation, visual results can be seen in Figure 12. These comparably high Dice scores might be
explained by the number of patients available for training and notably easier classes to separate.

Figure 12: Results on other datasets. Red: under-segmentation, blue: over-segmentation, purple:
correct segmentation.

4.6 Normalisation

In Figure 13 we see that normalising the inputs did not improve the results for either the volume
network or the fat-fraction network.
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Figure 13: Left: Different normalisations applied to the input data for volume network. Right:
Different normalisations applied to input data for the fat-fraction network.

5 Discussion

It is important to note that the ground truth segmentations are subjective. A human operator that
segments the same image twice will do it in a slightly different way, which creates an intra-operator
error. This, in turn, should create a theoretical max of how well our network can become since what
is considered ground truth may vary from slice to slice and the network may never converge since
there is no objective truth to converge towards. Antaros Medical keeps statistics of the operators
mean difference in predicted liver volume, where the average operator had a 1.7% deviation, while
our best network has an average difference of 1.1%. This in turn, is not a perfect comparison, as
different datasets were used and the measure is not an actual error measure, but rather a measure
of the operators’ bias toward over/under segmentation. Despite this, it at least puts our network’s
performance fairly close to the theoretical optimum.

In Table 1 many combinations have very similar Dice scores and it is therefore hard to draw solid
conclusions from these runs. However, it can be seen that transfer learning and the partial volumetric
information generally are more important than the short skip connections and the elastic deformations.

The most unexpected result was that normalising the data did not yield any better result for neither the
volume nor fat-fraction network. One could speculate that this could be explained by two different
datasets being used with very differing qualities and hence different features. It could therefore be
necessary that the network easily can tell those datasets apart and this ability could be hampered by
normalising the data.

The only data augmentation that helped us was using elastic deformations. One explanation to this
could be that we had relatively many patient volumes to train on. This decreased the need for creating
additional data.

For a neural network to be useful in practice it needs to be able to generalise well to new data. It would
not be particularly useful if 100 patient scans needs to be segmented manually so that a remaining
50 can be segmented automatically. In Table 2 we can see that the volume network generalise very
poorly between the two datasets, however it seems that by just moving some (perhaps as few as one)
of the validation datasets patients to the training, the ability to generalise is greatly increased. We
find this to be very interesting and worthy of future investigation since the ability to generalise to new
studies is vital if the networks are to be deployed. The varying Dice scores that can be seen in Table
2. It may seem like moving one patient scan is preferable to moving three, but this can be explained
by the fluctuations that can be seen in Figure 11. These fluctuations may increase as there are only a
few of the patients that are from the dataset, which is used during evaluation.

Lastly, the results of the other dataset shows that it is easy to adapt the current pipeline to completely
different segmentation problems and get segmentations of high quality.
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6 Conclusion

This project has produced an easily adaptable deep learning pipeline and two networks that can
utilise, among other things, transfer learning and volumetric information. The liver volume network
reached a Dice score of 0.971. It predicted 24 out of 25 liver volumes with less than 5% error. The
fat-fraction network reached a Dice of 0.933 and for 24 out of 25 patients the network predicted the
correct median fat-fraction value. The results also suggest that the ability to generalise can be raised
to acceptable levels by manually segmenting one patient scan in a new dataset and adding them to the
training set. This improved the volumetric network’s Dice score from 0.493 to 0.957. Moving one
patient scan raised the fat-fraction network’s Dice score from 0.342 to 0.876.
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