

Jiahao Lu

Jiahao.Lu.2199@student.uu.se

Markus Sagen

Markus.John.Sagen@gmail.com

Jianbo Li

Jianbo.Li.4196@student.uu.se

Supervisors

Nataša Sladoje Joakim Lindblad

Project in Computational Science 2020

Estimating Certainty in Deep Learning

Project Goals

Motivation

Implement several state-of-theart methods to reach wellcalibrated certainty estimates for deep learning based classification task

- **Evaluate** their performances
 - with different models
 - on two datasets
 - of several metrics

Deep neural networks tend to be

overconfident in their predictions.

Well-calibrated models are essential for trustworthy decision making.

Expressing uncertainty is crucial for high-stakes applications, like oral cancer screening or self-driving cars.

Material and Methods

OralCancer^[1] (OC) Classes: 2 Size: (80, 80, 3) Train: 65,973 Val: 7,330 Test: 55,514

Hard Label (LS0.0) OneHot encoding of

labels

MNIST

Classes: 10

Size: (28, 28, 1)

Train: 1,200

Val: 300

Test: 10,000

Label Smoothing^[2] (LS0.1) Soften the targets, e.g., $(0, 1) \rightarrow (0.1, 0.9)$

Models **Deterministic Model** (Base)

Task output of SoftMax as model's confidence

Monte Carlo Dropout^[3] (Drop)

Dropout layers stay active also in test phase

Concrete Dropout^[4] (CDrop & LLCDrop)

Auto-tune the Dropout rate with a continuous relaxation of Dropout's discrete masks

Flipout^[5] (VI & LLVI) Decorrelate the

gradients by implicitly sampling pseudoindependent weight perturbations for each sample

No Calibration (NC)

Temperature Scaling^[6]

Learn a scalar from validation set to rescale input of SoftMax

References:

- [1] G. Forslid et al., "Deep Convolutional Neural Networks for Detecting Cellular Changes Due to Malignancy," in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, 2017, pp. 82-89.
- [2] Ř. Müller et al., "When Does Label Smoothing Help?," arXiv:1906.02629 [cs, stat], Jun. 2019.
- [3] Y. Gal et al., "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in international conference on *machine learning*, 2016, pp. 1050–1059.

Results

Label Smoothing	Method	Calibration	Accuracy	AECE ^[7]	Train time (s/epoch)	Test time (s)
LS0.0	Base	NC	0.801	0.145	21.61	1.14
LS0.1	Base	NC	0.841	0.170	21.57	1.13
LS0.0	Base	TS	0.809	0.022	21.35	1.14
LS0.0	Drop	NC	0.823	0.133	20.42	10.97
LS0.0	CDrop	NC	0.778	0.096	41.73	22.77
LS0.0	LLCDrop	NC	0.821	0.134	21.95	11.72
LS0.0	VI	NC	0.211	0.232	48.86	23.51
LS0.0	LLVI	NC	0.822	0.125	23.05	11.57

Table: Sole method comparison of ResNet on MNIST

Discussion

- BNN methods do not improve calibration significantly.
- LS improves accuracy and mitigates overconfidence.
- TS efficiently assures well-calibrated models.
- LS and TS can be simply combined.
- Applying CDrop/VI only on the last layer reduces train/test time.
- ResNet tends to be worse calibrated than LeNet.
- [4] Y. Gal et al., "Concrete Dropout," arXiv:1705.07832 [stat], May 2017.
- 5] Y. Wen et al., "Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches," arXiv:1803.04386 [cs, stat], Apr. 2018. [6] C. Guo et al., "On calibration of modern neural networks," in Proceedings of the 34th International Conference on Machine Learning-Volume *70*, 2017, pp. 1321–1330.
- [7]Y. Ding et al., "Evaluation of Neural Network Uncertainty Estimation with Application to Resource-Constrained Platforms," arXiv:1903.02050 [cs, stat], Mar. 2019.