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Abstract
Although modern deep learning models are often highly effective, such effectiveness comes at
the cost of being overconfident of its own predictions. Quantifying and calibrating models’
uncertainty is critical for real-world applications, such as medical imaging or self-driving cars.
Calibration of predictive uncertainty for deep learning has been an active research area in recent
years.

In this paper, we implement a framework to intensively evaluate five state-of-the-art approaches,
including Label Smoothing, Monte Carlo Dropout, Concrete Dropout, Variational Inference,
Temperature Scaling, and some of their variants and combinations to reach well-calibrated deep
learning models for image classification task. Two models, LeNet and ResNet, are trained on
MNIST and an oral cancer dataset. The evaluation metrics include calibration error, classifi-
cation accuracy, processing time and memory usage. Our results indicate that the combination
of Label Smoothing and Temperature Scaling performs best on both accuracy and calibration,
with very little extra cost in time and memory. Our code is available as open source1.
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1 Introduction
In today’s world, an increasing number of systems guide and automate our decisions based on
algorithms of varying complexity. Many of these systems require high accuracy and perfor-
mance, where the so-called deep neural networks (DNNs) have excelled over other models and
have proven effective in a vast number of distinct areas, such as object detection [1], image
classification [2], speech recognition [3], automated driving [4], and medical diagnosis [5]. In
particular, deep learning (DL) has become an integral part of many decision-making pipelines.
However, when making decisions in the real world for use in critical applications, accurate and
well-calibrated measures of models’ uncertainty is crucial. Being able to reliably measure the
uncertainty of model’s decisions, such that the predicted accuracy of the models always correlates
with the confidence in the models’ prediction is called a well-calibrated model [6, 7].

In recent years, calibration of predictive uncertainty for DNNs has been an active research area.
The probabilistic approach uses Bayesian statistics for estimating the predictive posterior dis-
tribution of the model. But since the true posterior is often intractable due to the complexity
of modern neural networks, approximation methods have been proposed. Variational inference
(VI) methods were some of the earliest successful ones for computing an approximate poste-
rior for Bayesian neural networks (BNNs). Stochastic variational inference (SVI) [8] improved
stochastic gradient descent (SGD) by introducing natural gradient from information geometry.
However, this can greatly increase the number of parameters and time for training. Recently,
the so-called Flipout approach is proposed ( [9]) to efficiently decorrelate the gradients within
a mini-batch. By implicitly sampling pseudo-independent sample-wise weight perturbations, it
claims to achieve high speedups in the training of fully connected networks and convolutional
networks.

On the other hand, Monte Carlo Dropout (Drop) [10] shows that dropout layers [11] staying ac-
tive at testing phase can approximate the complicated sampling in variational inference methods.
By ensemble of the prediction results under multiple dropout masks, uncertainty can be esti-
mated without sacrificing accuracy or computational complexity. But to obtain well-calibrated
uncertainty estimates, dropout rate must be properly decided. Concrete Dropout (CDrop) [12],
as a variant of Drop, addresses this problem by a continuous relaxation of dropout’s discrete
masks. It allows automatic tuning of the dropout rate towards better calibration.

The calibration of confidence can also be a post-processing step after a model is trained. Tem-
perature scaling (TS) [13] learns a single corrective multiplicative scalar from the logits on the
validation set, and applies it at testing phase. It achieves better-calibrated predictions with-
out changing test accuracy, as shown in many evaluation experiments [14–16]. Furthermore,
Attended-NLL [17] is proposed as an improved loss function for TS. Recently, utilising unla-
belled test samples, Unsupervised Temperature Scaling (UTS) [18] allows the calibration done
in an unsupervised manner, and the prediction adjusted towards the distribution of test data.

Since the methods to achieve calibrated certainty estimates are conducted at different components
of the DL models, as far as we know, there is currently no work on a rigorous and empirical
comparison of these methods. In this paper, we implement a framework to evaluate different
methods. Five state-of-the-art methods are implemented within this framework, together with
several evaluation metrics. They are evaluated with two network architectures on two datasets
for DL-based image classification task. Furthermore, we also show that the methods can be easily
combined within the framework. The performance of their combinations are also evaluated.
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2 Background and Related Work

2.1 Introducing Uncertainty into a Deep Learning Model
An inherent limitation with deep conventional neural networks, is the deterministic approach to
the model prediction. Each weight and bias in the network is asserted to have a specific value,
meaning much information about the parameters and subsequently the model is not utilised. A
natural approach to introducing uncertainty into a neural network is to view the model from a
Bayesian approach. In Bayesian statistics, all parameters in a model are viewed, not as deter-
ministic, but rather as random variables drawn from an underlying probability distribution [19].
This means that the model parameters can be one of many possible values and that the param-
eters describe an inherent measure of uncertainty.

Instead of inferring point estimates of the parameters, Bayesian statistics attempts to infer the
full posterior distribution of the parameters. This means that all weights in a Bayesian deep
neural network are modelled as a probability density function. The uncertainty of an approx-
imate Bayesian model, given a prior distribution over its parameters, is given by calculating
the variance and mean of the predictive posterior distribution p(y∗ | x∗) [20]. However, since
the posterior distribution is intractable, approximate methods, such as variational inference or
Markov Chain Monte Carlo (MCMC) methods are used [21].

Calibration is the process of making a model well calibrated. Measuring calibration is to measure
the reliability of the model’s confidence in its own prediction. For instance, given 100 predictions,
if the model assigns a class with 70% probability, then we expect that class to appear in the
prediction 70% of the time. More formally, for a classification model with class labels y ∈
{0, 1, · · · ,K − 1} and a predicted class probability p̂ (confidence) for each labels [22], then the
model is said to be calibrated if

P
(
Ŷ = y | p̂ = p

)
= p, ∀p ∈ [0, 1], (1)

where Ŷ is the class label prediction and p̂ is the confidence in that label being correctly classified.
Their difference indicates the calibration error. If there is no calibration error for any class label
y and corresponding class probability p̂, then the model is considered perfectly calibrated [23].

2.2 Label Smoothing (LS)
Labels represent the ground truth of classes in classification tasks. Label smoothing [24] is a
way to soften labels and extend one-hot encoding. In one-hot encoding, for each training data
x, we have its ground-truth label y, and the probability which calculated by the model for each
label is k ∈ {1 . . .K}, where the ground-truth distribution over labels is q(k|x). Hence, we have∑
k q(k|x) = 1, this means that the sum of the probabilities for all labels is 1. We want to ensure

that for all labels, only the label probability corresponding to the ground truth label y is active
and all others are inactive: {

q(k) = 1, for all k = y
q(k) = 0, for all k 6= y

(2)

The equation above corresponds to a Dirac delta function δk,y, such that q(k) = δk,y. The label
distribution can then be expressed as [25]:

q(k|x) = δk,y. (3)
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However, this formulation only allows the value of a given label to have a probability of ones and
zeros. This restriction leads to several problems:

1. The model is more prone to overfit, since the assumption that the samples from training
and testing sets are independent and identically distributed does not reflect the reality.
If the model learns to assign full probability to the ground-truth label for each training
example, it is not guaranteed to generalise [25].

2. The model also learns inherent noise.

3. For some fuzzy examples, the model can not make clear distinctions, since much information
about label probabilities are lost. For instance, assuming a model is trained to distinguish
between the length of people as being either short or tall, if the network is given as an
input the image of a average height person, the current model would classify it as either a
short or tall person.

To mitigate these issues, we can use label smoothing. Introducing a smoothing parameter ε with
ε ∈ [0, 1], the label distribution is reformulated as:

q′(k|x) = (1− ε)δk,y + εu(k), (4)

where u(k) is a fixed distribution over labels. If we use the uniform distribution u(k) = 1/K,
then the label smoothing formulation is equivalent to a regularisation factor. Note that a label
smoothing factor of ε = 0 is equivalent to using regular label smoothing. When using label
smoothing,

q′(k) = (1− ε)δk,y +
ε

K
, (5)

even if k 6= y, q(k), the value is no longer zeros, but rather a value determined by the number of
labels K, and the smoothing parameter ε. This is equivalent to adding noise to label y, which
can prevent the model from making over-concentrating predictions on the label with higher prob-
abilities. Empirically, it has been shown that label smoothing can effectively prevent the model
from becoming overconfident, e.g., [24].

2.3 Monte Carlo Dropout (Drop)

Monte Carlo Dropout [10] is a method to approximate a BNN, using a regular NN with dropout
active during testing. It has become a commonly used baseline method when measuring model
uncertainty. The reason for this is because the method does not require a fully BNN-model
structure, but rather approximates a Bayesian network; since minimising a network with a cross-
entropy loss function and dropout applied after each layer is equivalent to minimising the KL-
divergence [26,27].

Because the methods allow for training on a deterministic DL model, and can be extended to
an approximate BNN model with a few extra steps, MC Dropout has since its inception become
one of the most commonly used calibration methods in comparative tests [23,28].

The uncertainty estimate for the model, can be decomposed and calculated from the poste-
rior distribution. The uncertainty, using approximate dropout method is thus given by using
Equations (6) - (8):
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Varq(y∗|x∗)

[
y∗
]
= Eq(y∗|x∗)[(y

∗)T (y∗)]︸ ︷︷ ︸
Second raw momentum

−Eq(y∗|x∗)[y
∗]T︸ ︷︷ ︸

MC DropoutT

Eq(y∗|x∗)[y
∗]︸ ︷︷ ︸

MC Dropout

. (6)

The Monte Carlo averaging (MC dropout) is defined as the averaging of the model prediction
over the weights L and the total number of samples T :

Eq(y∗|x∗)

[
y∗
]
≈ 1

T

T∑
t=1

ŷ∗t , (7)

and the second raw momentum for the uncertainty estimate is defined as

Eq(y∗|x∗)[(y
∗)T (y∗)] ≈ τ−1ID +

1

T

T∑
t=1

(ŷ∗t )
T (ŷ∗t ). (8)

At the evaluation phase, random nodes are dropped with a fixed dropout rate and vary from each
time the model is testing. By setting each weight in the network as either active (1) or dropped
(0), the drawn samples of active or dropped weights over several samples, model a Bernoulli
distribution over each weight [10]. Thus, Monte Carlo dropout or dropout during the test phase
can be seen as an approximate Bayesian method.

2.4 Concrete Dropout (CDrop)
Concrete dropout [12] is an extension of the Monte Carlo dropout method [10]. In the original
model, MC dropout uses a fixed dropout rate, but to obtain well-calibrated uncertainty estimates,
a grid-search over all possible dropout probabilities are commonly used. Concrete dropout,
however, uses a continual relaxation of the dropout’s discrete masks to obtain an optimal dropout
rate for each layer [12, 29]. This allows for a dynamically updated dropout rate, which can be
especially useful when training models, where the amount of available training data changes in
each iteration. Empirically, it has been shown that concrete dropout used on when trained on
MNIST performs equally well as hand-tunes parameters or MC dropout with grid-search [12].

2.5 Variational Inference with Flipout (VI)
Variational Inference methods use a proposal distribution q, which is easier to calculate than a
target distribution p, which usually is the posterior distribution. When the difference between q
and p is small, q can be used as the approximate distribution of p. To measure the difference be-
tween these two distributions, we use the Kullback-Leibler (KL) divergence. The KL divergence
is a non-negative measure between two distributions. When two distributions are equivalent, the
KL divergence is equal to 0. The KL divergence can be defined as [30]:

θ? = argmin
θ

KL[q(w|θ)‖P (w|D)]

= argmin
θ

∫
q(w|θ) log q(w|θ)

P (w)P (D|w)
dw

= argmin
θ

KL[q(w|θ)‖P (w)]− Eq(w|θ)[logP (D|w)],

(9)

where P (w|D) is the posterior distribution of the weights w given the training data D. Our goal
is to finds the parameters θ in the proposal distribution for the weights, called the variational pa-
rameter q(w|θ), such that it minimises the KL divergence. Through the above steps, we turned
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the problem of finding the posterior distribution into an optimisation problem. To make this
tractable and feasible to optimise in neural networks, an alternative function is often used called
evidence lower bound (ELBO, L) [31]. Maximising the ELBO is equivalent to minimising the
KL divergence. Though, KL divergence is not the only measure between distributions that can
be used, it is the most common because of the speed of computation [32].

Usually, when training a neural network, updating of the weights is done using weight pertur-
bation. This technique, however, has an inherent high variance for the gradient estimates, since
all training examples in a mini-batch share the same perturbation and can lead to correlations
between gradients. Flipout [9] is a methods proposed to mitigate this problem. Flipout is a
gradient estimator, which applied to variational inference tasks that can minimise the KL diver-
gence. The biggest advantage of using Flipout with VI methods, is that it can greatly decrease
the training time, while guaranteeing a reduce variance.

2.6 Temperature Scaling (TS)
Temperature scaling [23] is a post-processing calibration method, which adds a new scalar param-
eter T to the original SoftMax function, called temperature. The temperature scaling function
is defined as

σ(zi)
(k) =

ez
(k)
i∑K

j=1 ez
(j)
i

,

q̂i = max
k

σ(zi/T )
(k),

(10)

where q̂i is a calibrated probability based on the network’s predicted probability σ (zi). σ is a
sigmoid function, z is the logits (inputs to the SoftMax function), and T is the learned scalar.
The index i represents the sample and k represents the class. In Equation (10), if the tempera-
ture T is equal to 1, the temperature scaling function equals a regular SoftMax. Depending on
the value of the scalar T , the temperature scaling will either yield a smoother SoftMax output
(if T > 1) or sharper (if 1 > T > 0) [33], meaning it raises or lowers the output entropy. If
T → ∞, then q̂ equals 1

K and a maximum uncertainty of the labels is obtained. We learn the
scalar parameter T during training on a validation set, by minimising the NLL. Once the scalar
T is calculated, it is used in the temperature scaling function during training instead of SoftMax.

Since the parameter T in temperature scaling does not change the maximum of a SoftMax func-
tion, the original class prediction is still the same, thus evaluating with temperature scaling will
yield the same accuracy [23] as evaluating with SoftMax.

One of the benefits of temperature scaling is that it provides reliable model calibration ( [23])
or knowledge distillation ( [33]) and is also a so called post-processing methods. This means
it can be used in combination with other methods – achieving calibration with just one extra
parameter and much reduced training time, compared to other calibration methods.
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3 Data and Evaluation Methods
We compare several existing state-of-the-art methods for calibrating predictive uncertainty, by
building a DL based framework for achieving calibrated probabilities and varying each component
in the DL framework. This process is made in order to verify which components in combination
yield the most well-calibrated models and most reliably. A model is considered well-calibrated
when model accuracy equals the model confidence for all possible values. The components
of the DL framework and its various combinations are built upon one of two neural network
architectures: LeNet or ResNet50. The framework is divided into four subcategories, as depicted
in Figure 1. A fifth step is also used for evaluating the model, which is not depicted in the figure.

1. Datasets used (see Section 3.1)

2. Pre-processing methods (see Section 2.2)

3. BNN models or probabilistic calibration methods (see Sections 2.3 - 2.5)

4. Post-processing calibration methods (see Section 2.6)

5. Plotting and calibration metrics (see Section 3.2)

OralCancer[1]	(OC)
Classes:	2

Size:	(80,	80,	3)
Train:	65,973
Val:	7,330
Test:	55,514

Hard	Label
(LS0.0)

OneHot	encoding	of
labels

MNIST
Classes:	10

Size:	(28,	28,	1)
Train:	1,200
Val:	300

Test:	10,000

Monte	Carlo	Dropout[3]	(Drop)
Dropout	layers	stay	active	also	in	test	phase

No	Calibration	(NC)

Temperature	Scaling[6]
(TS)

Learn	a	scalar	from
validation	set	to	rescale

input	of	SoftMax

Deterministic	Model	(Base)
Task	output	of	SoftMax	as	model's	confidence

Concrete	Dropout[4]	(CDrop	&	LLCDrop)
Auto-tune	the	Dropout	rate	with	a	continuous

relaxation	of	Dropout’s	discrete	masks

Flipout[5]	(VI	&	LLVI)
Decorrelate	the	gradients	by	implicitly	sampling
pseudo-independent	weight	perturbations	for

each	sample

Label	Smoothing[2]
(LS0.1)

Soften	the	targets,	
e.g.,	(0,	1)→(0.1,	0.9)

Pre-processingData

BNN	Models

Post-processing

Figure 1: The structure of our DL framework

3.1 Datasets
This section describes the two datasets used in the DL framework. The first dataset, MNIST is
used as a baseline dataset to test the calibration methods. The second dataset, the oral cancer
dataset, is the dataset of primary importance to train and evaluate our model against.

3.1.1 MNIST

The MNIST dataset is a broadly used image dataset of grey scale handwritten digits, commonly
utilised for testing image classifiers. The input data has a dimension of 28x28 pixels and a to-
tal of ten output labels of numerical integers between 0 and 9. The dataset is subdivided into
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60,000 training images with labels and 10,000 test images with labels. This dataset is consid-
ered deeply understood and state-of-the-art deep CNNs achieves accuracy scores of 99% or above.

For the MNIST dataset, to restrain the accuracy of the models, we only use a subset of 1500
images, randomly sampled from the original training set. 300 images from the 1500 are randomly
chosen as a validation set, and the remaining 1200 images are used for training. The test set
contains the original 10000 images.

3.1.2 Oral Cancer Data (OC)

The oral cancer dataset is a dataset of brush scraped samples from patient’s oral cavities, scanned
in and digitised by Folktandvården Stockholms län AB. The oral cancer dataset consists of
128,817, 80x80 colorized images (3 channels for RGB), split into training and test set of size
73,303 and 55,514 respectively. The dataset used is based on the dataset 3, described in [34].
The label of this dataset is described on the "glass level", i.e., if a glass is sampled from a patient
with tumor, all cells from this glass are labeled as cancer cells.

For the OC dataset, 10% of the training set is randomly chosen as validation set. Since it is shown
from previous studies that the nucleus texture is the key feature for classification [35], we convert
the input RGB images to greyscale to avoid the influence of colors, L = 0.229R+0.587G+0.114B.
In addition, the data is augmented without interpolation. Each image is reflected with 50%
probability and rotated by angle φ ∈ {0◦, 90◦, 180◦, 270◦}.

3.2 Plotting and Measuring Calibration

In order to quantify and compare calibration methods, we utilise various calibration metrics and
methods to visualise calibration.

3.2.1 Reliability Diagrams

To visualise the relationship between the average accuracy and the average confidence, the so-
called reliability diagram is often used. The difference between accuracy and confidence is called
the accuracy gap. The x-axis represents confidence of the model and corresponds to the prob-
ability of the SoftMax output. The y-axis corresponds to the model accuracy. In a perfectly
calibrated model, the confidence will always be the same as it’s accuracy [23]. In our comparison,
reliability diagrams are used to visually display the effect of different calibration methods.

In Figure 2, two binning approaches are displayed, uniform to the left and adaptive to the
right. The red-coloured gap in the figure is the positive gap, which means our model has higher
accuracy than confidence, in other words: it’s an overconfident model. On the other hand, the
yellow gap represents a negative gap, which means that model is under-confident. Figure 2
also illustrates some of the potential problems with using a uniform binning compared to an
adaptive binning. From the calibration metrics we present below, both ECE and AECE uses
the reliability diagram for its binning strategy. ECE uses an uniform binning and AECE and
adaptive binning.

3.2.2 Calibration Metrics

NLL
Negative Log-Likelihood or Cross Entropy Loss is the most commonly used loss function for
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Figure 2: Reliability Diagram using uniform binning (left) and adaptive binning (right)

multi-class classification problems and measures the miss-classification, based on entropy. NLL
extends BCE, by assuming that the number of classes K can be any integer value greater than
one. Importantly, Negative Log Likelihood heavily penalises predictions that are confident, but
wrong:

NLL = − 1

N

N∑
i=1

K∑
k=1

yi,k log(p̂i,k), (11)

where y is the ground true class output, p̂ the predicted probability of the label given by the
model and N the number of training samples.

Brier Score
Calculating the Brier score is similar to calculating the NLL, with the difference being that is
taking the mean squared error [36]. It is defined as

Brier Score =
1

N

N∑
i=1

K∑
k=1

(
yi,k − p̂i,k

)2
. (12)

ECE
In order to evaluate calibration, we partition predictions into M equally-spaced bins. The pre-
dicted value of each instance falls into one of these bins. We calculate the difference between
accuracy and confidence for all bins and take the weighted average. This calibration method is
called Expected Calibration Error (ECE) [23] and is formulated as

ECE =

M∑
m=1

|Bm|
N
|acc (Bm)− conf (Bm)| . (13)

MCE
In some cases, it is not as important to minimize Expected Calibration Error, but rather minimize
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the worst-case deviation. That type calibration method is called Maximum Calibration Error
(MCE) and is similar to ECE, but calculates the maximum calibration error instead of expected
calibration error [23]. ECE is normally defined as

MCE = max
m∈{1,...,M}

|acc (Bm)− conf (Bm)| . (14)

The reason we use ECE and MCE is because these metrics are very commonly used, which allows
our experimental results to be compared with other researchers. These measures have some inher-
ent problems, which is why we primarily use AECE and AMCE as our default calibration metrics.

AECE and AMCE
The accuracy of ECE and MCE are highly depending on the binning strategy and there are three
main problems with conventional binning methods [37]:

1. Undetectable accuracy gap: Due to the uniform distribution of confidence on a large bin
range, an undetectable accuracy gap may appear within a bin. For example, the total
accuracy gap between [0.9,1] is small, but inside this bin the accuracy gap between [0.9,0.91]
might be very large.

2. Internal compensation: Within a bin, the accuracy gap may have different signs, that is,
the confidence may be bigger than or less than the accuracy.

3. Inaccurate accuracy estimation: This maybe encountered when proposing solutions for the
first two problems by increasing the number of bins. When our bins are many and there
are not enough samples, then some bins may not have enough samples or no samples at
all. This leads to inaccurate accuracy estimation. An example of this phenomena can be
seen in Figure 2, where a uniform binning is used, but to few samples within that range
can be obtained.

We use adaptive ECE (AECE) or adaptive MCE (AMCE), to tackle these issues. The process
of assigning the correct number of samples in each bin is made according to the distribution of
the samples and the specified confidence region. The number of samples n needed to estimate
the accuracy in a given bin is given as

n = 0.25

(
Zα/2

ε

)2

, (15)

where ε is the error margin and 1 - α is the confidence interval. This method, in comparison
to other previously discussed binning methods, is highly robust with respect to the choice of
hyper-parameters. During testing, the confidence range is initially set to 80%, yielding a value
for Zα/2 as 1.645 according to the settings in [37]. The error margin ε is set to the width of the
bins confidence range.
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4 Experiment Setting
This section describes the tools used in the model framework, environmental settings and hyper-
parameters. For an overview of the framework and its components, see Section 3 - Material and
Methods.

4.1 Experiment Environment
The models are implemented using Tensorflow GPU version 1.14. The high-level API Keras,
incorporated into Tensorflow, has been used for building most of the models [38]. Two base
libraries Tensorflow and Tensorflow Probability are used to access low-level features and interact
with the main models, such as inscribing probability distributions over weights or storing vari-
ables from previous iterations.

The configuration of our environment is as follows:

• CPU: Intel(R) Core(TM) i9-7980XE @ 2.60GHz

• GPU: NVIDIA GeForce RTX 2080 Ti

• OS: Linux 5.4.8-gentoo.

To run the current implementation of our code, a CUDA enabled GPU is required.

4.2 Implementation Details
The dataset available to run the framework for is either the MNIST or Oral cancer dataset.
Depending on the dataset chosen, the hyperparameters used in the model differ because of com-
plexity, input dimension and available data for each dataset.

Models are trained with a mini-batch size of 512 for 40 epochs on MNIST, and with a mini-batch
size of 256 for 50 epochs on the OC dataset. If the validation loss has not decreased for 5 epochs,
the learning rate is scaled by a factor of 0.1. Early stopping was implemented to stop the training
if no improvement has been made after 10 epochs. The checkpoint with minimum validation loss
is saved for testing.

For all BNN models other than the deterministic model, the inference methods are run 20 times
to sample from the distributions. The predicted logits for both validation and test set are the
mean values of the 20 runs. Since the Base methods with LeNet and ResNet architectures both
include a dropout layer with dropout rate p = 0.5 before the last dense layer, for Drop, the
dropout rate p is also set to 0.5. For CDrop and VI, the methods are also implemented only
on the last layer of the models to reduce computational and memory complexity, similar to [16],
named LLCDrop and LLVI. For LLCDrop, the dropout layer in the deterministic base models is
replaced with the CDrop layer. For LS, the smoothing factor is set to 0.1, as used in [24].

Categorical cross-entropy is used as the loss function for all models except for VI and LLVI,
where KL divergence is also summed with the cross-entropy, as described in Section 2.5.

Evaluating the framework is done by running a bash script for the desired dataset (MNIST or
Oral cancer). It then executes the framework by exchanging all possible permutations of network
architectures, pre-processing methods, BNN models and post-processing methods (as shown in
Figure 1). The command line options of the framework are shown in the Appendix.
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5 Results and Discussion

In this section, we evaluate the results of each combination in Figure 1. However, since the total
number of possible combinations is large, only a subset of interesting or best-performing methods
are displayed. Though all models have been evaluated using the calibration metrics described
in Section 3.2, only AECE is displayed in the tables below. The other evaluation metrics such
as NLL, Brier, ECE and more are included in an extensive table of results, available in the
Appendix. For each combination in the framework, classification accuracy, training time and
testing time are also measured using the settings described in Section 4.

5.1 Sole Method Comparison
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Figure 3: Sole method comparison. LLCDrop/LLVI denotes CDrop/VI applied only on the last
layer.

Results of each method working alone are presented in Figure 3, including LeNet on MNIST,
ResNet on MNIST, and ResNet on OC. Since LeNet appears to be too simple for the OC dataset,
only ResNet is applied. From Figure 3a and Figure 3b, we can see that BNN models do not
improve calibration significantly. Since LeNet appears to be initially well calibrated enough, it
is not easy to see how much the methods can improve from Figure 3a.

Comparing Figure 3a with Figure 3b, we can also see that ResNet tends to be worse calibrated
than LeNet. This is consistent with the conclusion in [23], where the model’s calibration is sug-
gested to be correlated to its width, depth and the type of regularisation techniques used.

To better illustrate Figure 3b, Table 1 is presented to show the quantitative results of ResNet
on MNIST. Although CDrop and VI tend to mitigate the overconfidence problem, they increase
the number of parameters and make the model harder to training. As we can see from Table 1,
the training of VI even failed, resulting in unacceptably low accuracy. Compared with using full
CDrop and VI, applying these methods only on the last dense layer reduces training and testing
time by around 50%.

As Table 1 shows, TS achieves the lowest AECE 0.022, suggesting the best-calibrated certainty
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Label
Smoothing Method Calibration Accuracy AECE Train time

(s/epoch)
Test time

(s)
LS0.0 Base NC 0.801 0.145 21.61 1.14
LS0.1 Base NC 0.841 0.170 21.57 1.13
LS0.0 Base TS 0.809 0.022 21.35 1.14
LS0.0 Drop NC 0.823 0.133 20.42 10.97
LS0.0 CDrop NC 0.778 0.096 41.73 22.77
LS0.0 LLCDrop NC 0.821 0.134 21.95 11.72
LS0.0 VI NC 0.211 0.232 48.86 23.51
LS0.0 LLVI NC 0.822 0.125 23.05 11.57

Table 1: Sole method comparison of ResNet on MNIST

estimates. LS reaches the highest accuracy 0.841, improving the Base model by 0.04. Both TS
and LS show very little difference in processing time. We consider these two methods promising
and continue to evaluate how they work when combined with other BNN methods.

As we can see in Figure 3c, methods show little difference on OC. This might due to the domain
shift in OC dataset, i.e., the training set and testing set are not exactly from the same distribution.
Taking TS as an example, since the temperature scalar is trained on the validation set, which
is randomly sampled from the training set, the calibration quality of testing set is unlikely to
improve. Considering this, the remaining results on OC are only included in the Appendix.
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Figure 4: Possible improvements on OC. TStar denotes TS trained on the testing set.

We present Figure 4 to verify the domain shift problem mentioned above. “TStar” in the legends
means the temperature scalar is trained on the target domain, i.e., testing set. In this case, as is
shown in Figure 4, the lines of TStar become close to the diagonal ideal line again. This indicates
the domain shift problem is the cause of ill-calibrated models on the OC dataset.
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(b) LS combined with ResNet

Figure 5: Effect of combining LS with BNN models on MNIST

5.2 Combining LS with Other Methods

Based on the results from the previous Section 5.1, we choose four methods: Base, Drop, LL-
CDrop, and LLVI to combine with LS. CDrop and VI are not assessed further, considering their
relatively low accuracy and long training/testing time. The results are tested on the models
using LeNet and ResNet on MINST and are displayed in Figure 5 and Table 2.

As Table 2 shows, acting as a regularisation, applying LS improves accuracy. As Figure 5 shows,
both LeNet and ResNet models become under-confident with LS applied, but whether it improves
calibration or not depends on how well the models are initially calibrated. More specifically, the
calibration became worse for LeNet, but better for ResNet.
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Architecture Label
Smoothing Method Accuracy AECE Train time

(s/epoch)
Test time

(s)

LeNet

No

Base 0.932 0.008 1.04 0.17
Drop 0.939 0.011 0.94 0.67

LLCDrop 0.924 0.009 1.70 1.06
LLVI 0.930 0.026 1.61 1.01

Yes

Base 0.943 0.105 1.02 0.17
Drop 0.943 0.120 0.92 0.67

LLCDrop 0.942 0.102 1.66 1.02
LLVI 0.943 0.135 1.59 0.98

ResNet

No

Base 0.801 0.145 21.61 1.14
Drop 0.823 0.133 20.42 10.97

LLCDrop 0.821 0.134 21.95 11.72
LLVI 0.822 0.125 23.05 11.57

Yes

Base 0.841 0.170 21.57 1.13
Drop 0.847 0.161 21.47 11.34

LLCDrop 0.828 0.134 21.77 11.53
LLVI 0.828 0.132 22.55 11.64

Table 2: Effect of combining LS with BNN models on MNIST

5.3 Combining TS with Other Methods

Similarly as above, we combine TS with the Base, Drop, LLCDrop, and LLVI to test their perfor-
mance using the LeNet and ResNet architectures on MINST. The results are shown in Figure 6
and Table 3.

As we can see from Figure 6 and Table 3, when combined with TS, all calibration lines become
close to the diagonal ideal line, and the calibration error AECEs were significantly reduced for
all methods. This stands for both LeNet and ResNet architectures.

The little difference in accuracy between with/without TS for each BNN model in Table 3 is
because that each combination is trained from start. The random initialisation can cause a little
perturbation in accuracy. If trained a large number of times, the accuracy of with/without TS
should have the same mean and variance values. This applies to results in all other tables.

5.4 Combining LS and TS with Other Methods

Based on the results from Section 5.2 and 5.3, we also evaluated the performance of combining
both LS and TS with Base, Drop, LLCDrop, and LLVI. The results are tested by LeNet and
ResNet on MINST and shown in Figure 7 and Table 4.

As shown in Figure 7 and Table 4, when TS applied with LS, all calibration lines become close
to the diagonal ideal line again, and the calibration error AECEs is significantly reduced for all
methods after they become under-confident under the effect of LS. This holds true for both LeNet
and ResNet architectures. Compared with the base models in Table 3, the training/testing times
remain almost unchanged.

With all these observations, we can conclude that LS and TS can be simply combined with other
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Architecture Calibration Method Accuracy AECE Train time
(s/epoch)

Test time
(s)

LeNet

NC

Base 0.932 0.008 1.04 0.17
Drop 0.939 0.011 0.94 0.67

LLCDrop 0.924 0.009 1.70 1.06
LLVI 0.930 0.026 1.61 1.01

TS

Base 0.936 0.006 1.00 0.18
Drop 0.936 0.008 0.94 0.66

LLCDrop 0.945 0.007 1.66 1.02
LLVI 0.929 0.017 1.57 0.98

ResNet

NC

Base 0.801 0.145 21.61 1.14
Drop 0.823 0.133 20.42 10.97

LLCDrop 0.821 0.134 21.95 11.72
LLVI 0.822 0.125 23.05 11.57

TS

Base 0.809 0.022 21.35 1.14
Drop 0.776 0.017 21.80 11.45

LLCDrop 0.802 0.014 22.01 11.67
LLVI 0.804 0.021 22.58 11.60

Table 3: Effect of combining TS with BNN models on MNIST

Architecture Calibration Method Accuracy AECE Train time
(s/epoch)

Test time
(s)

LeNet

NC

Base 0.943 0.105 1.02 0.17
Drop 0.943 0.120 0.92 0.67

LLCDrop 0.942 0.102 1.66 1.02
LLVI 0.943 0.135 1.59 0.98

TS

Base 0.947 0.005 1.01 0.17
Drop 0.944 0.007 0.93 0.66

LLCDrop 0.936 0.006 1.66 1.02
LLVI 0.938 0.004 1.55 0.97

ResNet

NC

Base 0.841 0.170 21.57 1.13
Drop 0.847 0.161 21.47 11.34

LLCDrop 0.828 0.134 21.77 11.53
LLVI 0.828 0.132 22.55 11.64

TS

Base 0.820 0.021 21.78 1.14
Drop 0.831 0.016 21.31 11.31

LLCDrop 0.841 0.031 22.27 11.60
LLVI 0.842 0.012 23.30 12.31

Table 4: Effect of combining LS and TS with BNN models on MNIST. All methods here are
applied with LS0.1.
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Figure 6: Effect of combining TS with BNN models on MNIST

BNN models to benefit from both methods, i.e., we can achieve

1) an improvement in accuracy,

2) together with good calibration,

3) on almost every BNN models,

4) at almost no extra computational cost.
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Figure 7: Effect of combining LS and TS with BNN models on MNIST. All methods here are
applied with LS0.1.

6 Future Work

The evaluated methods tested in this study did not show significant improvement on the cali-
bration of OC dataset. Figure 4 in Section 5.1 indicates the direction of solving this problem,
although training on the testing data is not applicable for real-world applications. The UTS [18]
(proposed later than our implementation) showed in their results that using unlabelled test data
to adjust the prediction towards the distribution of the target domain, the calibration line can
result between the regular TS and TS trained on testing set. This can be used to improve the
calibration on OC dataset.

On the other hand, some papers have suggested increased robustness and certainty calibration
by training using adversarial examples [39], and others have shown plausible methods for detect
adversarial examples with Bayesian neural networks [40, 41]. We believe both these aspects in
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conjunction could make automatic classification safer and more robust for possible real-world
usage [42].

Furthermore, we would like to extend the number of network architectures used and vary the
depth of the CNNs, to ensure a better estimate of how well calibration methods generalise for
different networks and depth. Finally, we would like to launch all permutations of pre-trained
models as an interactive cloud-based solution with a web interface, where each feature can be
toggled on or off. This would make the resulting interactions easier to compare and share with
others.

7 Conclusion
We implemented a framework to intensively evaluate five state-of-the-art approaches and some
of their variants to reach well-calibrated DL models for image classification task. The five meth-
ods are evaluated on two datasets, MNIST and OC, with two network architectures, LeNet and
ResNet. Accuracy, ECE, MCE, AECE, AMCE, NLL, Brier score, training/testing time, and
number of parameters are used as evaluation metrics. In addition, since the five methods apply
on different stages of the model, we also explored combinations of these methods.

According to our results, TS reaches the best calibration results with very little computation
cost. Three BNN models do not improve calibration significantly. LS can improve accuracy and
meanwhile mitigate the overconfidence problem, but not guarantee well-calibrated models. LS
and TS can be easily combined to benefit from both.

Our implemented framework enables modular replacement of DL models’ calibration evalua-
tion, including datasets, pre-processing methods, network architectures, post-processing meth-
ods, evaluation metrics and plotting options. Future new methods can be easily and fairly
compared with the implemented ones.
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Appendix

Figure 8: Usage instruction of the framework.
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(b) ResNet on OC, without LS, with TS
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(c) ResNet on OC, with LS, without TS
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(d) ResNet on OC, with LS and TS

Figure 9: Effect of combining LS and TS with BNN models on OC. All methods here are based
on the ResNet50 architecture.

24



A
rc

h
it

ec
tu

re
L
ab

el
S
m

oo
th

M
et

h
od

C
al

ib
ra

ti
on

A
cc

u
ra

cy
E
C

E
M

C
E

A
E
C

E
A

M
C

E
N

L
L

B
ri

er
t_

tr
ai

n
(s

/e
p
oc

h
)

t_
ca

l
(s

)
t_

te
st

(s
)

P
ar

am
et

er
s

(1
e6

)
Le

N
et

LS
0.
0

B
as
e

N
C

0.
93
2

0.
00
7

0.
09
0

0.
00
8

0.
07
6

0.
22
5

0.
86
8

1.
04

0.
00

0.
17

0.
16
4

Le
N
et

LS
0.
0

D
ro
p

N
C

0.
93
9

0.
01
1

0.
10
8

0.
01
1

0.
06
2

0.
20
2

0.
88
3

0.
94

0.
00

0.
67

0.
16
4

Le
N
et

LS
0.
0

C
D
ro
p

N
C

0.
93
6

0.
00
9

0.
10
1

0.
00
9

0.
09
0

0.
21
5

0.
85
5

2.
73

0.
00

1.
58

0.
16
4

Le
N
et

LS
0.
0

LL
C
D
ro
p

N
C

0.
92
4

0.
01
0

0.
09
4

0.
00
9

0.
06
6

0.
23
8

0.
85
5

1.
70

0.
00

1.
06

0.
16
4

Le
N
et

LS
0.
0

V
I

N
C

0.
86
4

0.
12
1

0.
27
6

0.
12
1

0.
25
7

0.
50
9

0.
57
9

2.
81

0.
00

1.
65

0.
26
1

Le
N
et

LS
0.
0

LL
V
I

N
C

0.
93
0

0.
02
6

0.
14
4

0.
02
6

0.
13
1

0.
24
2

0.
81
5

1.
61

0.
00

1.
01

0.
16
9

Le
N
et

LS
0.
0

B
as
e

T
S

0.
93
6

0.
00
6

0.
14
2

0.
00
6

0.
05
6

0.
20
2

0.
86
0

1.
00

0.
07

0.
18

0.
16
4

Le
N
et

LS
0.
0

D
ro
p

T
S

0.
93
6

0.
00
8

0.
09
2

0.
00
8

0.
12
0

0.
19
9

0.
85
7

0.
94

0.
08

0.
66

0.
16
4

Le
N
et

LS
0.
0

LL
C
D
ro
p

T
S

0.
94
5

0.
00
8

0.
07
4

0.
00
7

0.
06
3

0.
17
8

0.
88
8

1.
66

0.
05

1.
02

0.
16
4

Le
N
et

LS
0.
0

LL
V
I

T
S

0.
92
9

0.
01
7

0.
19
3

0.
01
7

0.
08
5

0.
23
4

0.
87
5

1.
57

0.
07

0.
98

0.
16
9

Le
N
et

LS
0.
0

C
D
ro
p

T
S

0.
94
2

0.
00
6

0.
18
6

0.
00
7

0.
05
3

0.
19
1

0.
86
7

2.
65

0.
06

1.
55

0.
16
4

Le
N
et

LS
0.
1

B
as
e

N
C

0.
94
3

0.
10
5

0.
24
1

0.
10
5

0.
24
2

0.
26
6

0.
72
0

1.
02

0.
00

0.
17

0.
16
4

Le
N
et

LS
0.
1

D
ro
p

N
C

0.
94
3

0.
12
0

0.
24
1

0.
12
0

0.
25
4

0.
28
3

0.
69
6

0.
92

0.
00

0.
67

0.
16
4

Le
N
et

LS
0.
1

LL
C
D
ro
p

N
C

0.
94
2

0.
10
2

0.
22
8

0.
10
2

0.
24
2

0.
26
9

0.
72
2

1.
66

0.
00

1.
02

0.
16
4

Le
N
et

LS
0.
1

LL
V
I

N
C

0.
94
3

0.
13
6

0.
32
4

0.
13
5

0.
34
3

0.
31
2

0.
67
5

1.
59

0.
00

0.
98

0.
16
9

Le
N
et

LS
0.
1

C
D
ro
p

N
C

0.
94
3

0.
12
9

0.
27
0

0.
12
9

0.
28
3

0.
29
8

0.
68
4

2.
70

0.
00

1.
53

0.
16
4

Le
N
et

LS
0.
1

B
as
e

T
S

0.
94
7

0.
00
5

0.
80
1

0.
00
5

0.
06
5

0.
17
4

0.
88
8

1.
01

0.
05

0.
17

0.
16
4

Le
N
et

LS
0.
1

D
ro
p

T
S

0.
94
4

0.
00
6

0.
27
4

0.
00
7

0.
05
9

0.
18
2

0.
88
5

0.
93

0.
07

0.
66

0.
16
4

Le
N
et

LS
0.
1

C
D
ro
p

T
S

0.
94
3

0.
01
5

0.
07
3

0.
01
6

0.
11
8

0.
18
4

0.
85
9

2.
67

0.
07

1.
52

0.
16
4

Le
N
et

LS
0.
1

LL
C
D
ro
p

T
S

0.
93
6

0.
00
5

0.
19
9

0.
00
6

0.
06
4

0.
20
4

0.
86
6

1.
66

0.
06

1.
02

0.
16
4

Le
N
et

LS
0.
1

LL
V
I

T
S

0.
93
8

0.
00
4

0.
07
2

0.
00
4

0.
04
8

0.
20
0

0.
87
0

1.
55

0.
06

0.
97

0.
16
9

R
es
N
et

LS
0.
0

B
as
e

N
C

0.
80
1

0.
14
5

0.
37
3

0.
14
5

0.
41
4

1.
19
0

0.
76
8

21
.6
1

0.
00

1.
14

23
.5
75

R
es
N
et

LS
0.
0

D
ro
p

N
C

0.
82
3

0.
13
3

0.
33
4

0.
13
3

0.
39
3

1.
17
6

0.
79
6

20
.4
2

0.
00

10
.9
7

23
.5
75

R
es
N
et

LS
0.
0

C
D
ro
p

N
C

0.
77
8

0.
09
1

0.
13
8

0.
09
6

0.
16
1

1.
00
9

0.
48
7

41
.7
3

0.
00

22
.7
7

23
.5
75

R
es
N
et

LS
0.
0

LL
C
D
ro
p

N
C

0.
82
1

0.
13
4

0.
36
2

0.
13
4

0.
39
3

1.
12
7

0.
79
2

21
.9
5

0.
00

11
.7
2

23
.5
75

R
es
N
et

LS
0.
0

V
I

N
C

0.
21
1

0.
21
0

0.
74
8

0.
23
2

0.
74
5

3.
26
3

0.
04
8

48
.8
6

0.
00

23
.5
1

47
.0
68

R
es
N
et

LS
0.
0

LL
V
I

N
C

0.
82
2

0.
12
5

0.
37
1

0.
12
5

0.
37
0

0.
99
8

0.
78
8

23
.0
5

0.
00

11
.5
7

23
.5
96

R
es
N
et

LS
0.
0

B
as
e

T
S

0.
80
9

0.
01
9

0.
06
1

0.
02
2

0.
09
8

0.
59
8

0.
61
7

21
.3
5

0.
05

1.
14

23
.5
75

R
es
N
et

LS
0.
0

D
ro
p

T
S

0.
77
6

0.
01
5

0.
14
4

0.
01
7

0.
07
7

0.
70
1

0.
59
1

21
.8
0

0.
05

11
.4
5

23
.5
75

R
es
N
et

LS
0.
0

LL
C
D
ro
p

T
S

0.
80
2

0.
00
8

0.
18
5

0.
01
4

0.
06
1

0.
61
2

0.
62
9

22
.0
1

0.
07

11
.6
7

23
.5
75

R
es
N
et

LS
0.
0

LL
V
I

T
S

0.
80
4

0.
01
9

0.
21
9

0.
02
1

0.
07
0

0.
63
4

0.
61
1

22
.5
8

0.
06

11
.6
0

23
.5
96

R
es
N
et

LS
0.
0

C
D
ro
p

T
S

0.
83
9

0.
05
6

0.
15
3

0.
06
0

0.
15
3

0.
64
4

0.
61
5

44
.9
7

0.
06

22
.9
1

23
.5
75

R
es
N
et

LS
0.
1

B
as
e

N
C

0.
84
1

0.
17
0

0.
29
2

0.
17
0

0.
32
4

0.
64
6

0.
48
2

21
.5
7

0.
00

1.
13

23
.5
75

R
es
N
et

LS
0.
1

D
ro
p

N
C

0.
84
7

0.
16
1

0.
26
5

0.
16
1

0.
30
5

0.
61
6

0.
50
3

21
.4
7

0.
00

11
.3
4

23
.5
75

R
es
N
et

LS
0.
1

LL
C
D
ro
p

N
C

0.
82
8

0.
13
4

0.
21
8

0.
13
4

0.
24
4

0.
64
3

0.
50
7

21
.7
7

0.
00

11
.5
3

23
.5
75

R
es
N
et

LS
0.
1

LL
V
I

N
C

0.
82
8

0.
13
2

0.
23
7

0.
13
2

0.
26
3

0.
66
0

0.
51
2

22
.5
5

0.
00

11
.6
4

23
.5
96

R
es
N
et

LS
0.
1

C
D
ro
p

N
C

0.
45
9

0.
21
9

0.
67
1

0.
21
9

0.
67
7

1.
87
2

0.
05
8

44
.2
7

0.
00

22
.4
4

23
.5
75

R
es
N
et

LS
0.
1

B
as
e

T
S

0.
82
0

0.
01
9

0.
06
7

0.
02
1

0.
09
4

0.
58
6

0.
64
0

21
.7
8

0.
04

1.
14

23
.5
75

R
es
N
et

LS
0.
1

D
ro
p

T
S

0.
83
1

0.
01
4

0.
14
9

0.
01
6

0.
05
6

0.
55
2

0.
69
0

21
.3
1

0.
08

11
.3
1

23
.5
75

R
es
N
et

LS
0.
1

C
D
ro
p

T
S

0.
78
2

0.
05
0

0.
81
2

0.
05
7

0.
10
3

0.
74
3

0.
52
6

44
.0
9

0.
06

22
.3
1

23
.5
75

R
es
N
et

LS
0.
1

LL
C
D
ro
p

T
S

0.
84
1

0.
02
8

0.
81
1

0.
03
1

0.
09
6

0.
51
2

0.
72
2

22
.2
7

0.
06

11
.6
0

23
.5
75

R
es
N
et

LS
0.
1

LL
V
I

T
S

0.
84
2

0.
00
9

0.
17
7

0.
01
2

0.
06
8

0.
51
0

0.
70
4

23
.3
0

0.
06

12
.3
1

23
.5
96

T
ab

le
5:

A
ll
re
su
lt
s
on

M
N
IS
T

us
in
g
bo

th
Le

N
et

an
d
R
es
N
et
50

25



L
ab

el
S
m

oo
th

M
et

h
od

C
al

ib
ra

ti
on

A
cc

u
ra

cy
E
C

E
M

C
E

A
E
C

E
A

M
C

E
N

L
L

B
ri

er
t_

tr
ai

n
(s

/e
p
oc

h
)

t_
ca

l
(s

)
t_

te
st

(s
)

P
ar

am
et

er
s

(1
e6

)
LS

0.
0

B
as
e

N
C

0.
68

2
0.
19

0
0.
22

0
0.
19

0
0.
24

7
0.
90

7
0.
56

8
93

.1
4

0.
00

11
.0
4

23
.5
59

LS
0.
0

C
D
ro
p

N
C

0.
66

7
0.
19

1
0.
23

2
0.
19

1
0.
26

4
0.
93

2
0.
54

2
13

6.
95

0.
00

46
.5
1

23
.5
59

LS
0.
0

D
ro
p

N
C

0.
69

1
0.
18

1
0.
20

9
0.
18

1
0.
24

2
0.
89

4
0.
57

7
94

.8
3

0.
00

43
.3
5

23
.5
59

LS
0.
0

LL
C
D
ro
p

N
C

0.
67

9
0.
18

3
0.
21

9
0.
18

3
0.
25

4
0.
85

8
0.
55

8
95

.6
0

0.
00

43
.8
8

23
.5
59

LS
0.
0

LL
V
I

N
C

0.
63

4
0.
20

4
0.
20

4
0.
20

4
0.
22
7

0.
77

8
0.
45

5
78

.8
5

0.
00

23
.9
1

23
.5
63

LS
0.
0

B
as
e

T
S

0.
66

7
0.
17

4
0.
21

8
0.
17

4
0.
22

3
0.
86

4
0.
52

7
82

.4
2

0.
07

12
.1
8

23
.5
59

LS
0.
0

C
D
ro
p

T
S

0.
66

2
0.
17

8
0.
22

6
0.
17

8
0.
23

9
0.
88

9
0.
51

8
13

4.
69

0.
07

45
.4
2

23
.5
59

LS
0.
0

D
ro
p

T
S

0.
68

6
0.
16

2
0.
19

7
0.
16

2
0.
20

8
0.
81

2
0.
54

7
82

.3
0

0.
07

27
.5
5

23
.5
59

LS
0.
0

LL
C
D
ro
p

T
S

0.
66

8
0.
18

0
0.
22

1
0.
18

0
0.
23

9
0.
87

7
0.
53

2
82

.8
0

0.
05

27
.7
2

23
.5
59

LS
0.
0

LL
V
I

T
S

0.
63

4
0.
05

6
0.
77

0
0.
05

7
0.
47

6
0.
66

5
0.
33

7
77

.9
5

0.
07

22
.7
5

23
.5
63

LS
0.
1

B
as
e

N
C

0.
68

4
0.
16

8
0.
21

9
0.
16

8
0.
23

3
0.
73

6
0.
53

8
96

.6
8

0.
00

11
.1
5

23
.5
59

LS
0.
1

C
D
ro
p

N
C

0.
66

5
0.
16

0
0.
19

7
0.
16

0
0.
25

4
0.
76

9
0.
50

0
13

7.
23

0.
00

46
.6
1

23
.5
59

LS
0.
1

D
ro
p

N
C

0.
64

8
0.
15

3
0.
21

9
0.
15

3
0.
50

0
0.
75

6
0.
46

3
82

.8
5

0.
00

28
.2
3

23
.5
59

LS
0.
1

LL
C
D
ro
p

N
C

0.
67

1
0.
16

9
0.
21

2
0.
16

9
0.
22

5
0.
74

6
0.
51

9
85

.2
3

0.
00

28
.7
8

23
.5
59

LS
0.
1

LL
V
I

N
C

0.
63

5
0.
17

1
0.
60

9
0.
17

1
0.
67
9

0.
73

9
0.
42

6
81

.2
1

0.
00

24
.7
7

23
.5
63

LS
0.
1

B
as
e

T
S

0.
67

3
0.
19

5
0.
23

5
0.
19

5
0.
25

6
0.
80

0
0.
55

0
82

.1
7

0.
05

12
.2
4

23
.5
59

LS
0.
1

C
D
ro
p

T
S

0.
67

1
0.
18

1
0.
21

1
0.
18

1
0.
28

1
0.
79

0
0.
53

2
13

4.
91

0.
05

45
.5
3

23
.5
59

LS
0.
1

D
ro
p

T
S

0.
66

8
0.
19

8
0.
23

3
0.
19

8
0.
25

0
0.
83

3
0.
54

6
82

.1
9

0.
09

27
.4
9

23
.5
59

LS
0.
1

LL
C
D
ro
p

T
S

0.
68

3
0.
17

7
0.
20

8
0.
17

7
0.
24

1
0.
79

6
0.
55

2
82

.5
7

0.
08

27
.7
5

23
.5
59

T
ab

le
6:

A
ll
re
su
lt
s
w
it
h
R
es
N
et
50

on
O
C

26


	Introduction
	Background and Related Work
	Introducing Uncertainty into a Deep Learning Model
	Label Smoothing (LS)
	Monte Carlo Dropout (Drop)
	Concrete Dropout (CDrop)
	Variational Inference with Flipout (VI)
	Temperature Scaling (TS)

	Data and Evaluation Methods
	Datasets
	MNIST
	Oral Cancer Data (OC)

	Plotting and Measuring Calibration
	Reliability Diagrams
	Calibration Metrics


	Experiment Setting
	Experiment Environment
	Implementation Details

	Results and Discussion
	Sole Method Comparison
	Combining LS with Other Methods
	Combining TS with Other Methods
	Combining LS and TS with Other Methods

	Future Work
	Conclusion
	Reference
	Appendix

