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Abstract

Deep neural networks’ inability to predict their certainty is an is-
sue affecting their usage. The aim of this study is to evaluate meth-
ods for achieving more well-calibrated models. In addition, a number
of measures for estimating the certainty of a classifier are evaluated.
The studied methods are temperature scaling, ensemble methods and
Stochastic Weight Averaging Gaussian. Five certainty measures were
implemented to evaluate these methods on three different network
structures. The three measures that involve binning the predictions
were shown to provide the most consistent results. The results suggest
that, out of the studied methods, temperature scaling produces the
most well-calibrated image classification models.
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1 Abbreviations

AECE Adaptive Expected Calibration Error

AMCE Adaptive Maximum Calibration Error

ECE Expected Calibration Error

NLL Negative Log-Likelihood

SGD Stochastic Gradient Decent

SWA Stochastic Weight Averaging

SWAG Stochastic Weight Averaging Gaussian

2 Introduction

Deep neural networks have been shown to be successful in a wide range of
supervised learning applications [1]. The ability to predict their certainty
is however still unsatisfactory and limits the use in real-world applications.
Together with the predicted class probabilities the network can output the
confidence of the prediction [2], where an overconfident network produces too
high class probabilities.

The predicted class probability of 0.80 for a well-calibrated network can be
interpreted as the class appearing 80% of the time for that input. Hence, a
well-calibrated network expresses its uncertainty through a low confidence or
predicted probability.

The aim of this study is to evaluate methods for achieving well-calibrated
image prediction models and a number of certainty measures. In the study
both Bayesian and non-Bayesian methods are explored. The methods stud-
ied are temperature scaling [2], ensemble methods [3] and Stochastic Weight
Averaging Gaussian [4]. The methods are applied to three different net-
work structures of varying network depth. The studied certainty metrics are:
Negative Log-Likelihood, Brier Score, Expected Calibration Error, Adaptive
Expected Calibration Error and Adaptive Maximum Calibration Error.

4



3 Background

Supervised learning is the machine learning subbranch, where a model is
trained using pairwise input and output signals. Neural networks are com-
monly trained using supervised learning and deeper network structures have
in recent years achieved great success in a wide range of applications [1].
However, these deep neural network classifiers have been shown to lack the
ability to estimate their own predictive certainty accurately. The deep net-
works tend to overestimate their certainty, in other words they provide over-
confident models.

3.1 Bayesian Methods

Bayesian methods express the uncertainty of the model parameters w through
probability distributions over the parameters [5]. The relationship between
the posterior distribution p(w|D), the likelihood function p(D|w) and the
prior distribution p(w) can be expressed by Bayes’ theorem as

posterior ∝ likelihood× prior,

where the posterior distribution describes our knowledge of the parameters
w after observing the data D, the likelihood describes the probability of the
data in view of the parameters and the prior distribution encodes prior belief
of the parameters.

The natural certainty representation and ability to utilize prior knowledge
are advantages of Bayesian methods [5]. But for modern neural networks
Bayesian approaches have previously been intractable. Due to the high
computational load associated with high number of parameters and non-
convexity of the posterior [4]. Modern approaches to Bayesian deep learning
include Variational Inference, Dropout Variational Inference, Laplace Ap-
proximation and Markov Chain Monte Carlo.
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3.2 Calibration

A neural network can output both a class prediction and an indication of
how confident the network is over its prediction, also known as its confidence
[2]. For example if a network outputs 100 predictions, all with a confidence
of 0.8. Then, if the network is well calibrated, the accuracy of the network
should be 80% (i.e., around 80 of those 100 predictions should be correct).

Modern neural networks tend to be deeper, i.e. have more layers, to achieve a
higher accuracy. However it has been shown that deeper neural networks also
tend to be miscalibrated [2]. In order to achieve more calibrated networks
one can use calibration methods, which are further discussed in Section 3.4.

A reliability diagram is a tool for visualizing the calibration of a model.
An example of a reliability diagram is presented in Figure 1. A model’s
confidence given a sample is calculated as the maximum predicted class
probability. For a perfectly calibrated model the confidence is equal to the
accuracy. The samples are sorted and grouped (binned) according to the con-
fidence value of each sample. The reliability diagrams are then constructed
by plotting the average confidence against the accuracy in each bin. In this
study a uniform and an adaptive binning strategy is implemented.

Figure 1: An example of a reliability diagram. The dashed line corresponds to
a perfectly calibrated model. The green line corresponds to an underconfident
model and the magenta line corresponds to an overconfident model.
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3.3 Certainty Measures

Scoring rules measure the accuracy of probabilistic predictions by assigning
a score based on the predicted outcome and the true outcome [6]. Let S be
a scoring rule, then the score is given by S(P,Q), where P is the predicted
outcome and Q is the true outcome. The score is presented as a value within
the interval [0, 1].

A scoring rule is proper if the expected score is optimized by the true
probability distribution [6]. Depending on the type of scoring rule, which
can be transformations of each other, the goal can be to either maximize or
minimize the expected score. As an example the goal for the Brier Score is
to minimize the expected score.

3.3.1 Negative Log-Likelihood

The Negative Log-Likelihood (NLL) is a proper scoring rule [7]. It is defined
as

−
N∑

n=1

K∑
k=1

tnk ln ynk,

where N is the number of samples, K the number of classes, tnk is element
k from a one-hot encoded target vector which corresponds to sample n and
ynk is the predicted probability for sample n and class k [5].

In multiclass classification this measure is also known as the cross-entropy
error function [2].

3.3.2 Brier Score

The Brier Score is a commonly used proper scoring rule which can be used
as a calibration measure [7]. The Brier Score is defined as:

1

N

N∑
n=1

(yn − tn)2,
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where N is the number of samples, yn is the predicted probability and tn is
the label for sample n [8].

3.3.3 Binning Based Measures

Expected Calibration Error (ECE) [9], is a certainty measure defined as

E
P̂

[
abs

(
P

(
Ŷ = Y |P̂ = p

)
− p
)]

,

where Ŷ is a class prediction, P̂ its associated confidence, Y the label and
p is the confidence [2]. It can be described as the difference in the expected
confidence and accuracy. A low value of ECE indicates a more well-calibrated
model.

Adaptive Expected Calibration Error (AECE) is a certainty measure which
extends ECE. Unlike ECE, which uses either equally sized bins or bins with
equal range, AECE uses an adaptive method to determine the size of the
bins [10]. The bin size is smaller in areas of higher population. It is claimed
in [10] that AECE is better than ECE at capturing the calibration error due
to its adaptive binning. Adaptive Maximum Calibration Error (AMCE) is
similar to AECE but uses an adaptive binning to find the maximum expected
calibration error in any bin [10].

3.4 Methods for Achieving Well-Calibrated Models

This section introduces the three studied methods for achieving well-calibrated
models: temperature scaling, ensemble methods and Stochastic Weight
Averaging Gaussian.

3.4.1 Temperature Scaling

Temperature scaling is a calibration method which improves the certainty
measures of neural networks [11]. The method is based on Platt Scaling [12]
and is presented in [2]. One scalar parameter T is used for rescaling the
non-probabilistic input to the softmax layer. The aim of the non-Bayesian
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method is to make the predictions of a neural network more calibrated. The
calibrated probability can be expressed as follows:

q̂i = max
k
σSM

(
zi
T

)(k)

,

where zi is the logit vector for the sample i, σSM is the softmax function,
T is the scalar parameter often referred to as the temperature and k is the
class index. The parameter T has the same value across all classes with the
condition that T > 0 and is trained using the loss function NLL. Temperature
scaling does not affect the accuracy of the model since including the scalar
parameter does not change the predictions of the network.

The results from [2] show that “modern” neural networks tend to be more
miscalibrated. Although the accuracy is usually increased by using a more
“modern” neural networks, they are also overconfident due to being miscali-
brated. This implies that the network’s confidence is greater than its actual
accuracy. In [2] multiple post-processing calibration methods are evaluated
and compared amongst each other as well as to temperature scaling. It is
the parametric approach of temperature scaling which differs it from many
other calibration methods.

The certainty measures used in the evaluation are ECE, maximum calibration
error and NLL [2]. The calibration methods for multi-class models evaluated
are the following: extensions of several binning methods, matrix, vector and
temperature scaling. Matrix, vector and temperature scaling are all exten-
sions of Platt scaling where temperature scaling is the simplest approach.
Using temperature scaling as the calibration method resulted in significantly
more well-calibrated networks for some datasets compared to the other meth-
ods. For the rest of the studied datasets temperature scaling had similar
performance as the other methods.

3.4.2 Ensemble Methods

Ensemble methods is an approach where a combination of multiple models
are used to obtain a stronger model and hence achieve a better predictive
performance [3]. In [7] ensemble methods and two measures are proposed
for evaluation: calibration and out-of-distribution examples, where out-of-
distribution examples refer to if the ”network knows what it knows”.
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The method is divided into three separated parts:

1. Proper scoring rules are used as the benchmark for training

2. Adversarial training to smoothing the distributions

3. Ensemble training

and are executed in this order [7].

Proper scoring rules are used for measuring the property of calibration. To
measure calibration the Brier Score and NLL are used [7]. To obtain a
smoother predictive distribution, virtual adversarial training is mentioned
as a complementary alternative proposed in [13]. A randomization-based
approach is used for training the ensemble, which is the last step of the
proposed process. An example of a randomization-based method is random
forest, which can be trained in parallel.

When performing the experiment, the proper scoring rule NLL is evaluated
[7]. Both the Brier Score and accuracy are used as measures for the classifi-
cation problems, while the root mean square error is used as a measure for
the problems involving regression.

3.4.3 Stochastic Weight Averaging Gaussian - SWAG

Stochastic Weight Averaging Gaussian (SWAG) is an approximate Bayesian
inference technique for deep learning [4]. SWAG is an extension of Stochastic
Weight Averaging (SWA) [14], where weights are averaged over Stochastic
Gradient Descent (SGD) iterates. A high and constant learning rate schedule
is used to improve generalization.

SWAG approximates the posterior distribution of the neural network weights
by a Gaussian [4]. The first moment is taken from the SWA solution and
the covariance matrix is calculated as a low rank matrix plus a diagonal
matrix. Bayesian model averaging is then performed by sampling from the
approximate distribution.

The covariance matrix approximation used in SWAG is more flexible than
the standard diagonal matrices used in variational inference and Laplace
approximations in Bayesian deep learning [4]. As previously mentioned, the
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SWAG approximation is a sum of a diagonal and a low rank matrix
1
2
· (Σdiag + Σlow-rank). The rank of the approximated matrix is restricted by

the hyperparameter K, which corresponds to the last K number of epochs
of training considered. The final approximated posterior distribution can be
written as N (θSWA,

1
2
· (Σdiag + Σlow-rank)), where θSWA is the SWA solution.

If SGD with weight decay or explicit L2 regularization is used for training
deep neural networks, then SWAG can be applied without modifications to
training [4]. For training a piecewise constant learning rate schedule and an
adaptive moment is used. To evaluate uncertainty the measures NLL and
ECE are used, calibration is investigated by studying reliability diagrams.
Experiments on different computer vision tasks are conducted and the per-
formance compared to alternatives like MC dropout, temperature scaling and
KFAC Laplace. The results indicate that SWAG performs well compared to
the other methods.

4 Implementation

First a baseline model with a test accuracy of approximately 90% was con-
structed for each network. The chosen networks were LeNet-5 [15], VGG-16
[16] and ResNet-50 [17], where the number indicates the number of layers
in the network. The open source machine learning platform TensorFlow [18]
and the neural networks API Keras [19] were used for the implementation.
The code was written in Python and is available at the public GitHub reposi-
tory [20]. The computations were made on a NVIDIA-SMI 440.44 GPU with
CUDA 10.1, via Google Colab [21]. The hyperparameters used for training
the baseline are presented in Table 1. SGD was used as optimizer where the
learning rate was set to 0.01 with a decay of 0.0001 and the momentum was
set to 0.9. Cross-entropy was used as the loss function.

4.1 Networks & Dataset

For each network the training size was chosen to achieve the desired accuracy
of approximately 90%. The MNIST dataset, consisting of handwritten digits,
was used for training and testing our models [22]. The dataset contains
70 000 images of size 28x28 pixels. The test size was kept constant in order
to perform a fair comparison. The number of epochs as well as the batch
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sizes for training and testing were also kept constant. The final values for
these hyperparameters are presented in Table 1.

Table 1: Setup for training and testing the implemented networks with the
MNIST dataset. The number of epochs differs when using SWAG. These
settings were chosen to achieve an accuracy of approximately 90%.

Training size Test size Epochs Batch Size (training/test)

LeNet-5 900 40 000 10 64/32

VGG-16 5 000 40 000 10 64/32

Resnet-50 6 000 40 000 10 64/32

4.2 Methods for Achieving Well-Calibrated Models

The implementation of temperature scaling was based on code available at
[23]. The implementation required the logits of the network. These were
calculated using a function that inverted the softmax operation and hence
returned the logits [24]. The temperature T , was then found by minimizing
the cross-entropy of the logits scaled with the parameter T and the correct
labels. The same dataset used for training the baseline model was used when
determining the parameter T . The chosen optimizer for this step imple-
mented the momentum algorithm. The value of the momentum was set to
0.9 and the learning rate to 0.01

Ten ensemble members were used in the ensemble methods implementation,
and each ensemble member were one of the three network structures pre-
viously mentioned. This is in contrast to the approach in [1] and [3] where
multilayer perceptrons with 2-3 hidden layers were used. Adversarial training
was not implemented in this study.

The ensemble members were kept if the accuracy was equal to or greater
than 0.2, to make sure that the ensemble member performs at least better
than choosing a label at random (1/10 for MNIST). The predictions of the
ensemble was obtained by taking the mean of the predictions of the separate
ensemble members. As a consequence weights for all ensemble members
must be kept in order to make new predictions. Hence, the memory usage is
directly proportional to the number of ensemble members.
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The implementation of SWAG was based on code available at [25]. The
networks LeNet-5 and VGG-16 were trained with SWAG. The original im-
plementation in [4] uses an optimizer with a varying momentum as well as a
learning rate schedule. The varying learning rate schedule was implemented,
but a fixed momentum of 0.9 was used. When these features were added
to the original implementation [25] the learning process failed as the opti-
mizer got stuck in a local optima. To solve this issue, while still keeping the
learning rate schedule, the momentum was reduced to 0.5 for VGG-16.

The dataset in this study is significantly smaller than the original paper. To
account for this the number of training epochs were reduced. In the original
paper the number of epochs is set to 300, the number of SWAG epochs to 160
and the hyperparameter K set to 20. As not to interfere with the method
itself and keep K constant the number of epochs was set to 120 and the
number of SWAG epochs to 61.

5 Results

This section presents the results of applying temperature scaling, ensemble
methods and SWAG to three different neural network structures. The results
are presented in the form of tables and reliability diagrams. The five imple-
mented metrics are presented in Tables 2-4 and the best model according to
each metric is highlighted. For each network reliability diagrams based on
both uniform and adaptive binning are presented. The reliability diagrams
include a line representing a perfectly calibrated model. Both the tables and
the figures include a baseline model for each network as a reference. Enlarged
reliability diagrams are located in Appendix A.

5.1 LeNet-5

The reliability diagrams in Figure 2 suggest that SWAG produces an over-
confident model for LeNet-5. Both the baseline and the ensemble methods
produces underconfident models while temperature scaling results in the most
well-calibrated model.
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(a) Uniform binning. (b) Adaptive binning.

Figure 2: Reliability diagrams for LeNet-5 with uniform and adaptive binning
respectively. The results for all three studied methods can be seen as well
as the baseline. The result for a perfectly calibrated model is plotted for
reference.

It can be seen in Table 2 that neither NLL nor the Brier Score captures
a difference in calibration with temperature scaling compared to the base-
line for LeNet-5. These metrics suggest that ensemble methods improve the
calibration while the binning based metrics suggest an impaired calibration.
Brier does not agree that the calibration is impaired by using SWAG.

Table 2: Results for LeNet. Used training size = 900, test size = 40 000,
learning rate = 0.01, learning rate decay = 0.0001. For SWAG a decreasing
learning rate schedule was used. The best method according to each metric
is highlighted.

Baseline Temp. Scaling Ensemble SWAG

NLL 0.30 0.30 0.25 0.38

Brier 0.14 0.14 0.12 0.13

ECE 0.030 0.0050 0.039 0.049

AECE 0.027 0.0052 0.039 0.050

AMCE 0.11 0.053 0.12 0.23
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5.2 VGG-16

The reliability diagrams in Figure 3 suggest that both SWAG and the base-
line produce overconfident models for VGG-16. Ensemble methods result
in an underconfident model while temperature scaling produces the most
well-calibrated model.

(a) Uniform binning. (b) Adaptive binning.

Figure 3: Reliability diagrams for VGG-16 with uniform and adaptive bin-
ning respectively. The results for all three studied methods can be seen as
well as the baseline. The result for a perfectly calibrated model is plotted for
reference.

It can be seen in Table 3 that for VGG-16 NLL and Brier agree that all
methods improve the calibration. The binning based metrics suggest that the
ensemble methods impair the calibration. All metrics agree that temperature
scaling improves the calibration for VGG-16.
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Table 3: Results for VGG-16. Used training size = 5 000, test size = 40 000,
learning rate = 0.01, learning rate decay = 0.0001. For SWAG a decreasing
learning rate schedule was used. The best method according to each metric
is highlighted.

Baseline Temp. Scaling Ensemble SWAG

NLL 0.35 0.22 0.22 0.16

Brier 0.16 0.10 0.093 0.050

ECE 0.025 0.0051 0.079 0.020

AECE 0.025 0.0064 0.079 0.020

AMCE 0.090 0.050 0.22 0.25

5.3 ResNet-50

The reliability diagrams in Figure 4 suggests that ensemble methods produces
an underconfident model for ResNet-50. Both the baseline and temperature
scaling produce the most well-calibrated models.

(a) Uniform binning. (b) Adaptive binning.

Figure 4: Reliability diagrams for ResNet-50 with uniform and adaptive
binning respectively. The results for the applied methods can be seen as well
as the baseline. The result for a perfectly calibrated model is plotted for
reference.

For ResNet-50 it can be seen in Table 4 that ensemble methods is the pre-
ferred method according to NLL and Brier. According to ECE and AECE
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the baseline is to be preferred while AMCE suggests that temperature scaling
is the preferred method.

Table 4: Results for ResNet-50. Used training size = 6 000, test size =
40 000, learning rate = 0.01, learning rate decay = 0.0001. The best method
according to each metric is highlighted.

Baseline Temp. Scaling Ensemble

NLL 0.31 0.81 0.25

Brier 0.15 0.38 0.091

ECE 0.012 0.031 0.15

AECE 0.012 0.032 0.15

AMCE 0.085 0.068 0.30

5.4 Accuracy, Loss & Computational Time

The accuracy and loss for the different combinations of implemented networks
and methods are presented in Table 5. The baseline is kept for reference.
SWAG was not implemented for ResNet-50 hence there is no result for this
combination in the table.

Table 5: Accuracy and loss for combinations of implemented networks and
methods. The first value is the accuracy and the second value is the loss.

Baseline Temp. Scaling Ensemble SWAG

LeNet-5 0.91/0.30 0.91/0.31 0.91/0.33 0.92/0.38

VGG-16 0.89/0.35 0.93/0.22 0.92/0.27 0.97/0.16

ResNet-50 0.90/0.31 0.73/0.81 0.96/0.15 -

Temperature scaling should be performed on the pretrained baseline and
hence not affect the accuracy of the network. However this was not how the
implementation was done, which can be seen in Table 5 as the accuracy of
the baseline model and the scaled model are not equal.
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In Table 6 the run times are presented for LeNet-5, VGG-16 and ResNet-50.
The values correspond to the training time and evaluation time respectively.
The ensemble members were trained sequentially, not in parallel which would
have greatly reduced the run time. The values presented in Table 6 are
therefore presented per ensemble member instead of the total run time. The
run times for applying SWAG to the studied networks are significantly greater
than for the other methods.

Table 6: Training and evaluation time for combinations of implemented net-
works and methods. The first value is the training time and the second value
is the evaluation time. For the ensemble the presented time is an average per
ensemble member.

Baseline [s] Temp. Scaling [s] Ensemble [s] SWAG [min]

LeNet-5 8/2 3/3 2/3 1.8/1.4

VGG-16 40/19 39/18 39/19 6.4/4.1

ResNet-50 80/19 88/23 111/39 -

5.5 Measures & Binning Strategies

The use of uniform or adaptive binning does not seem to have a great impact,
as the two certainty measures ECE and AECE produce similar values. The
point corresponding to the first bin in the reliability diagrams with uniform
binning deviates for all three networks. This is likely caused by a low number
of data points in the first bin. This is not present in the adaptive diagrams,
and showcases an advantage of the adaptive binning strategy.

The binning based measures are consistent with the reliability diagrams ex-
cept for ResNet-50, where AMCE deviates. The inconsistency can be ex-
plained by the definition of AMCE, which picks the maximum calibration
error in any bin with adaptive binning. In Figure 4 it can be seen that the
baseline has an outlier value which causes the deviating choice of method.
Meanwhile, ECE and AECE captures the average deviation from the per-
fectly calibrated model, which is smaller for the baseline.

The non-binning based measures consistently agree regarding the most pre-
ferred methods. But the preferred model is constantly in a disagreement
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with the conclusions drawn form the reliability diagrams. These metrics ei-
ther suggest ensemble methods or SWAG, which is never proposed by the
diagrams nor binning based measures.

6 Discussion & Conclusions

A challenge within this field is the lack of consensus regarding the choice of
certainty metrics and baseline models. Previous studies claim that deeper
neural networks are less well-calibrated. However this is inconsistent with the
results presented in this study. The baselines deviate less from the perfectly
calibrated line in the reliability diagrams and the certainty measures tend to
decrease for the deeper networks. Less well-calibrated baseline models might
better showcase the performance of the calibration methods.

In Section 5.5 it was suggested that the binning based metrics give more
consistent results for different networks. However the basis of this conclusion
can be considered biased as the reliability diagrams and the binning based
metrics are based on the same binning strategy. Hence, it is not surprising
that they agree. In a way one could consider them two different ways of view-
ing the same information, where ECE corresponds to the uniform binning
reliability diagrams and AECE to the adaptive binning reliability diagrams.
An unexpected conclusion of this study is that the deep baseline models,
without any form of calibration, were fairly well-calibrated. This conclusion
was also based on the reliability diagrams and the binning based measures
and might therefore also be biased.

Temperature scaling was the only method that improved the calibration of
the networks, according to the reliability diagrams. For ResNet-50 all the
measures except AMCE indicate a reduced performance when applying tem-
perature scaling. Advantages of temperature scaling include that it is fast to
train and straightforward to implement.

From the reliability diagrams and the binning based measures it can be con-
cluded that the ensemble methods result in underconfident predictions. A
possible explanation is that our baseline models are relatively well-calibrated.
The calibrated predictive probabilities are calculated as an average over sev-
eral networks. Since the accuracies of the networks varies, the class probabil-
ities (which sum to 1) are distributed differently over the classes. Hence, it
is not surprising that applying ensemble methods to a well-calibrated model
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produces underconfident predictions. Had the original network structures
been overconfident then the method might have worked as expected. The
non-binning based certainty measures suggest that the ensemble methods im-
prove the calibration of the networks. The original paper suggests ensembles
of multilayer perceptrons, as opposed to deep convolutional networks. This
approach was not evaluated and might still produce well-calibrated predic-
tions.

SWAG produces overconfident models for both LeNet-5 and VGG-16 ac-
cording to the reliability diagrams and the binning based measures. The
non-binning based measures gave inconsistent results and as ResNet-50 was
not implemented it is difficult to assess the method. Implementing SWAG
was challenging, the training process tended to get stuck in local optima and
the training time was by far the longest. Hence we do not recommend this
method. However, due to the differences in implementation compared to the
original paper mentioned in Section 4.2, the evaluation of the method might
be considered unfair.

In conclusion the binning based metrics give more consistent results. This
combined with the generated reliability diagrams lead to the conclusion that
temperature scaling is the best studied method for achieving well-calibrated
image classification models.

7 Future Work

There are several interesting topics to further explore within this field. One
would be to study deeper network structures, to further investigate how the
performance of the methods varies. Another topic is to explore other datasets
and less well-calibrated baseline models.
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