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Abstract

Standard Convolutional Neural Networks (CNNs) are naturally translation
invariant since correlation or convolution operations are shift invariant.
However, they are not rotation equivariant nor invariant. In this report,
three rotation equivariant and/or invariant methods are evaluated to tes-
tify that they do improve image classification and can be applied to help
detecting oral cancer.
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1 Introduction

The successful application of Convolution Neural Networks (CNNs) in image classi-
fication tasks can be attributed largely to the fact that convolution or correlation
operations are translation-invariant. However, convolution or correlation opera-
tions do not exhibit invariance to rotations. If such invariance is not explicitly
encoded, the network must learn it from the data, usually by augmenting the
training input images with rotations, which requires more parameters and thereby
increases susceptibility to overfitting.

In this report, we introduce three CNNs into which rotation invariance can
be explicitly encoded: Group Equivariant Convolutional Networks (G-CNNs) (Co-
hen and Welling, 2016), Conic Convolution and Discrete Fourier Transform Net-
work (CFNet) (Chidester et al., 2019) and Harmonic Networks (H-nets) (Worrall
et al., 2016). G-CNNs maintain the property of rotation equivariance throughout
the convolution layers of the network and pools for each filter to encode invari-
ance. CFNet proposes two innovations for CNNs: conic convolution layers and 2D-
discrete-Fourier transform (2D-DFT). H-Nets replace the regular CNN filters with
circular harmonics. Improvement in classification accuracy of G-CNNs, CFNet
and H-Nets over a standard CNN, is shown in the classification of rotated images
of MNIST.

We further apply these methods to detect oral cancer. As we all known, the
prognosis for patients diagnosed with oral cancer is worse than for the average
cancer disease and one of the most effective ways to decrease the mortality is by
early detection (Öhman, 2019) . According to World Health Organization 657,000
new cases of oral cancer are estimated each year and more than 330,000 deaths.
Screening cells from the oral cavity and classifying them as cancerous or healthy is
one way to detect cancer at an early stage. CNNs with improved performance for
rotated images could be a help when trying to increase the accuracy for diagnosing
cancer.

The three models evaluated in this report are described in Section 2. Sec-
tion 3 describes implementation details and results of our experiments on ro-
tated MNIST and Oral Cancer Dataset. We discuss the three models based
on the results in Section 4. Source code for the implementation is available on
https://github.com/Carolinehan/CS-Project.

2 Background

In this section, we first explain equivariance and invariance, then describe the three
rotation equivariant and/or invariant methods. G-CNNs, CFNet and H-Nets all
encode rotation equivariance and invariance through filters instead of augmenting
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training data. However, in G-CNNs, rotated filters are convolved across entire
input feature maps, in CFNet, rotated filters are only convolved along radial,
conic regions of the input feature map and H-Nets use angle frequency instead
of discrete degrees. Theoretically, it is expected that H-Nets perform best while
slowest and for CFNet to perform worse but faster than G-CNNs. All of them are
expected to perform better and slower than standard CNNs.

2.1 Equivariance and invariance

A transformation is equivariant if its application on the input results in a pre-
dictable change of the (features of the) output. In Figure 1(a) an original image
I(x) of a cat and a copy of the original image after a rotation by π rad are shown.
Their corresponding feature maps f(I) and f(π[I]) are represented with blue cir-
cles and the difference can be described by the transformation ψ. Invariance is a
special case of equivariance where the transformation ψ is the identity transforma-
tion. In this case the feature vector remains constant for invariant transformations
as shown in Figure 1(b).

I(x) π [I]
π

f (I) f (π[I]) = 𝜓 [f (I)]

𝜓

f f

(a)

I(x) π [I]

π

f (I) 𝜓 [f (I)] = f (I)

𝜓

f f

(b)

Figure 1: (a) Rotation equivariance (b) Rotation invariance (Lohrelei)

3



2.2 Group Equivariant Convolutional Networks(G-CNNs)

The insight of G-CNNs is to apply convolution over transformation groups includ-
ing rotation, translation and flips, thereby maintaining equivariance throughout
the convolutional layers. G-CNNs represent feature maps in 2D space Z2 of inte-
gers, or pixel locations in the case of images as a function f : Z2 → RK and filters
as φ : Z2 → Rk where K denotes dimension. The functions are operated on symme-
try groups, thereby G-CNNs achieving equivariance for rotation transformations.
A symmetry group has the following properties:

• The composition of two symmetry transformations g and h is another sym-
metry transformation.

• The inverse g−1 of any symmetry g is also a symmetry, and composing it
with g gives the identity transformation e.

The expression for convolution of a filter over a feature map in a standard CNN
is given by

f ∗ φ(x) =
K−1∑
k=0

∑
z∈Z2

fk(z)φk(z − x),

where the filter is translated over the image and the inner product is computed
at each translation (Chidester et al., 2019). G-CNNs replace the shift by a more
general transformation from some group G, such as the group G = p4 of 90◦

rotations, or G = p4m which additionally includes reflection. p4 group can be
parameterized by g(r) acting on points in Z2 by matrix multiplication for a given
point x = (u

′
, v

′
) ∈ Z2 as

g(r, u, v) =

 cos(rπ/2) − sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1

 u′

v′

1

 ,
where 0 ≤ r < 4 and (u, v) ∈ Z2 (Cohen and Welling, 2016).
In the first layer of G-CNNs, by replacing shift with group G, we get the G-
Convolution:

[f ? φ](g) =
∑
y∈Z2

∑
k

fk(y)φk
(
g−1y

)
.

For all layers after the first, the convolution operation becomes

[f ? φ](g) =
∑
h∈G

∑
k

fk(h)φk
(
g−1h

)
.

In the final layer, a group-pooling layer is used to ensure that the output is either
invariant (for classification tasks) or equivariant as a function on the plane (for
segmentation tasks, where the output is supposed to transform together with the
input) (Veeling et al., 2018).
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2.3 Conic Convolution and Discrete Fourier Transform Net-
work(CFNet)

G-CNNs consider both local and global rotation equivariance in convolutional
networks. By delaying the imposition of invariance till the final, fully-connected
layers, as much global structure as possible is thereby incorporated. However,
by applying pooling on individual filters, potentially valuable mutual rotational
information across filter responses is therefore lost. CFNet, by having all the
advantages of G-CNNs, captures global rotation invariance better. It consists of
two innovations: conic convolution layer and 2D-Discrete Fourier Transform as
described in following. In Figure 2 we demonstrate the overall architecture of
CFNet.

2.3.1 Conic Convolution Layer

Rather than convolving each filter across the entire image, rotated filters are con-
volved along radial, conic regions of the input feature map. This is accomplished
by convolving the input with each filter, rotated by multiple of π/2R, for R ∈ Z>0,
over corresponding conic regions of the domain. As G-CNNs, CFNet also consid-
ers feature maps as functions over 2D space. The feature map is partitioned into
conic regions {Cr}4R−1r=0 . The boundaries of conic regions are denoted by {Br}4R−1r=0 .
They can be expressed

Cr =
{

(x, y) ∈ Z2 : θr < arccot(x/y) + πI(y < 0) < θr+1

}
,

Br =
{

(x, y) ∈ Z2 : arccot(x/y) + πI(y < 0) = θr
}
,

where θr = 2πr
4R

and I(·) is the indicator function (Chidester et al., 2019).

2.3.2 2D-Discrete Fourier Transform(2D-DFT)

Normally, after the final convolutional layer, fully connected layers will be applied
to combine responses from all the filters. However, fully connected layers do not
maintain rotation equivariance or invariance properties since the output of the
last convolutional layer is usually a vector without spatial information. Rather
than encoding invariance for each filter separately, as in G-CNNs, CFNet instead
transforms the collective filter responses to a space in which rotation becomes cir-
cular shift so that the 2D-DFT can be applied to encode invariance. The primary
advantage of the 2D-DFT as an invariant transform is that each output node is a
function of every input node, and not just the nodes of a particular filter response,
thereby capturing mutual information across responses. In this layer, feature maps
are represented as tensors, rather than functions as DFT is defined only for finite-
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length signals.

Figure 2: The overall architecture of the proposed rotation-invariant CNN. (a) Fil-
tering the image by various filters {ω} at rotations in corresponding conic regions
preserves rotation-equivariance. (b) Subsequent convolutional feature maps are
filtered similarly. Rotation-invariance is encoded by the transition from convolu-
tional to fully-connected layers, which consists of (c) element-wise multiplication
and sum, denoted by �, with rotated weight tensors {Ω}, transforming rotation
to circular shift, and (d) application of the magnitude response of the 2D-DFT to
encode invariance to such shifts. (e) This output is reshaped and passed through
the final, fully-connected layers (Chidester et al., 2019).

2.4 Harmonic networks

Harmonic networks (H-nets) described in (Worrall et al., 2016) hard-bake rota-
tion equivariance into the structure by replacing regular convolutional filters with
circular harmonics. This way H-nets exhibit equivariance for 360◦rotation and
patch-wise translation. A filter from the circular harmonics family can be ex-
pressed

Wm(r, φ;R, β) = R(r)ei(mφ+β), (1)

where r, φ are the polar coordinates of the image, R : R+ → R the radial profile,
β ∈ [0, 2π) a phase offset term and m ∈ Z the rotation order. The radial profile
is a function controlling the filter’s shape and the filter has orientation selectivity
due to the phase offset term. The radial profile and the phase offset are the
learnable parameters. The rotation order corresponds to an angular frequency
and each circular harmonic picks up a different rotation order in the input making
it possible to process each in a separate stream. To move between streams cross-
correlation of the rotation order that equals the difference between the two streams
is used. This means the streams can share information at each layer which allows
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for rotation equivariant deep features more complex than the circular harmonic
itself.

Since the circular harmonic filters are defined in the polar domain and the
images in the dataset are sampled on a rectangular grid in 2D we anti-alias the
input to a discretized layer which is done with a Gaussian blur. The filter after
being resampled can be described with

W (xi) =
∑
j

gi(rj)W (rj), (2)

where xi is a pixel on the rectangular grid and g(xj) ∝ e−||ri−xj ||22/(2σ2). If Rj is
a radial tensor, I the identity matrix and [cosmΦrj ,isinmΦrj ]

T an angular tensor
then

Wm(rj) =
I∑
j

R(rj)

[
Icosβ −Isinβ
Isinβ Icosβ

] [
cosmΦrj

isinmΦrj

]
. (3)

3 Experiments

In this section, we describe rotated MNIST and Oral Cancer Dataset and how
they are pre-processed for our experiments. We present the selected architecures
and training parameters for the three rotation equivariant and/or invariant CNNs
we discussed in the background section together with a standard CNN model. We
first evaluate these models on rotated MNIST. Then we optimize some of the four
models to evaluate on Oral Cancer Dataset.

Unless otherwise specified, our models are implemented in Tensorflow 1.14
and Python2 using GPU Nvidia GeForce GT 730.

3.1 Rotated MNIST

The rotated MNIST dataset (public static twiki) consists of 10000 training images,
2000 validation images and 50000 test images. The images are variations of the
handwritten digits in the common MNIST dataset where the numbers have been
rotated with uniformly generated angles between 0 and 2π, see Figure 3 for a
sample. The images have the size 28x28x1 and each image belongs to one of the
ten classes corresponding to the digit.
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Figure 3: Samples from the rotated MNIST dataset.

We normalize the whole dataset by mean and standard deviation calculated
over training set, so that the data is centered around 0 and has a unit standard
deviation with an aim to improve convergence speed and accuracy.

To verify if rotation equivariant and/or invariant methods improve rotated
MNIST classification, we reduce impacts from other aspects except the methods
themselves, such as hyper-parameters and number of layers. We limit all four
models to consist of nine layers and adopt the same hyper-parameters:

• Batch size: 100

• Epochs: 100

• Adaptive learning rate: Initialized with 0.001 and decreased if no improve-
ment after 12 epochs in validation set.

• Optimizer: Adam

3.1.1 Standard CNN

The architecture consists of seven convolution layers, each with 10 3x3 filters, one
max pooling layer, and one fully connected layer as shown in Figure 4(a). The max
pooling layer uses a filter of size 2x2 with stride 2. We apply batch normalization
and Relu activation function after every convolution layer.

3.1.2 G-CNN

As shown in Figure 4(b), G-CNN model has a similar architecture to the standard
CNN model except it uses G-Convolution layer instead of convolution layer and
the filter size of the last G-Convolution layer is 4x4 as opposed to 3x3.

3.1.3 CFNet

CFNet also has nine layers in total consisting of six conic convolution layers, one
max pooling layer, and one fully connected layer. Different from standard CNN and
G-CNN models, CFNet has a 2D-DFT transition layer before the fully connected
layer as Figure 4(c) shows.
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3.1.4 H-Nets

H-Nets contain seven cross-correlated layers and two mean-pooling as shown in
Figure 4(d). They have the characteristic streams, in this setup there are two
rotation orders, m = 0 and m = 1. The polar filters have the size 5x5.

(a) (b)

(c)

Cross-correlation Layer

 Mean-pooling Layer

(d)

Figure 4: (a) Standard CNN (b) G-CNN (c) CFNet (d) H-Nets

3.1.5 Results

Here we present training and validation accuracy of the four models in Figure 5.
All the models perform better on training dataset over validation, in other words,
overfitting. Especially, standard CNN achieves 100% training accuracy while less
than 80% validation accuracy. After fifty epochs, H-Nets get nearly the same
training and validation accuracies. G-CNN converges fastest in less than 10 epochs
while H-Nets converge slower taking almost fifty epochs.

Table 1 presents results on test dataset of rotated MNIST where H-Nets
obtain the highest accuracy but taking more time than the three other models
which is clearly shown in Figure 6. G-CNN gets nearly the same accuracy as H-
Nets while eight minutes faster. CFNet obtains lower accuracy and slower than
G-CNN. Standard CNN is the fastest model which only costs five minutes to
finish training on rotated MNIST, however, the accuracy is not competitive with
the other models.

In order to reduce the impact of other elements such as batch size, learning
rate, data augmentation, we do not adopt the same network configurations as
described in papers Cohen and Welling (2016), Worrall et al. (2016) and Chidester
et al. (2019). For G-CNN, paper Cohen and Welling (2016) gets 2.28% test error,
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97.72% test accuracy, which is higher than our result. The reason we think is
they use Chainer and the last layer is a max pooling layer while we use Tensorflow
and the last layer is a fully connected layer which introduces more parameters and
thereby lowers the test accuracy. For CFNet, paper Chidester et al. (2019) reports
1.75% test error, 98.25% test accuracy. It introduces data augmentation based
on code posted by the authors of G-CNNs at https://github.com/tscohen/

gconv_experiments. However, the paper Cohen and Welling (2016) dose not
state the use of training augmentation and the code does not use it by default.
Therefore, the results of paper Chidester et al. (2019) are not very precise to use for
comparison. For H-Net, paper Worrall et al. (2016) reports a test error of 1.69%
and 98.31% accuracy. The gap between it with our result is mainly because the
authors train with batch size 64 while we train with batch size 100. Although we
scarify accuracy to make a more reasonable comparison, our results do prove that
rotation equivariant and/or invariant CNNs improve image classification compared
with standard CNNs.
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(a) (b)

(c) (d)

Figure 5: Training and validation accuracy of the four models on Rotated MNIST:
(a) Standard CNN (b) G-CNN (c) CFNet (d) H-Nets

Table 1: Testing Results

Model Accuracy Time
H-Nets 96.98% 42min
G-CNN 95.35% 34min
CFNet 92.36% 40min
Standard CNN 76.19% 5min
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Figure 6: Test Accuracy of Standard CNN, CFNet, G-CNN and H-Nets on Rotated
MNIST Dataset.

3.2 Oral Cancer

In the dataset there are 128,821 images with the size 80x80x3 where ∼33.2% are
cancerous cells and the remaining healthy cells. Samples by 12 patients were
collected at Folktandv̊arden in Stockholms län by scraping the oral cavities. The
samples were put in liquid vials, stained and scanned to digital images. The
produced RGB images have been segmented to make this dataset where one image
contains one cell each. The images are originally divided in a training and a test
dataset as shown in Table 2. Different sizes of the training dataset are tested to
evaluate the classification accuracy.

Table 2: Original dataset with oral cell images.

Training data Test data
Cancerous Healthy Cancerous Healthy
22 454 50 851 20 323 35 193

We normalize this dataset by two different sets of mean and stand deviation.
One is calculated over training set, while the other is calculated over individual
image. We apply early stop feed back method which stops the training once no
improvement during fifteen epochs in validation accuracy and select the model
based on validation accuracy.
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3.2.1 Standard CNN

We use Resnet50 (He et al., 2015) to evaluate Oral Cancer Dataset. Resnet50 is a
residual learning framework to ease the training of networks that are substantially
deeper than those used previously. It is proposed by Kaiming He and won the
ImageNet competition in 2016. Keras provides multiple ready-made deep neural
networks architecture. In this method, we adopt a ready-made ResNet50 model
architecture but changing the input layer and the last layer.

3.2.2 G-CNN

We adopt the same configuration of G-CNN as described in Section 3.1.2 to eval-
uate Oral Cancer Dataset.

3.2.3 CFNet

Different from the architecture we use in rotated MNIST as described in Sec-
tion 3.1.3, we adopt the architecture of paper (Chidester et al., 2019) which con-
tains seven conic convolution layers, each has 32 3x3 filters, two average pooling
layers, a 2D-DFT transition layer and one fully connected layer. The first three
conic convolution layers contain 8 conic regions which are decreased to 4 in the
following conic convolution layers and the 2D discrete Fourier transform transi-
tion layer. The average pooling layers have filter size 2x2 and stride 2. A dropout
probability of 0.8 is applied at the final layer. The model is trained using learning
rate 0.005, a wight decay l2 penalty of 0.0005, batch size 50 and epochs 100.

3.2.4 H-Nets

The same configuration of H-Nets as described in Section 3.1.4 is applied when
evaluating the method on Oral Cancer Dataset.

3.2.5 Results

The classification accuracy of two normalization methods with training sizes 10000,
30000 and 50000 predicted by models CFNet, G-CNN, H-Nets and Resnet50 are
shown in Table 3 and Table 4. Table 3 shows the classification accuracies of
trained models on dataset normalized by mean and standard deviation calculated
over training set. With training size 10000 and 50000, H-Nets perform best while
with training size 30000, Resnet50 beats H-Nets. All models get best results
with training size 30000. Table 4 presents classification accuracies achieved on
dataset normalized by mean and standard deviation calculated over individual
image. Unlike Table 3, H-Nets perform best with training size 10000 and 30000,
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while Resnet50 defeats H-Nets with training size 50000.
CFNet performs worse or slightly better than G-CNN in both Table 3 and

Table 4. CFNet model used in Oral Cancer Dataset consists of 32 filters in every
layer, which is much more than G-CNN’s 10 filters in every layer. Additionally,
from Figure 7, Figure 8, Figure 9 and Figure 10 we can see that CFNet is more
sensitive to the two normalization methods, we conclude that CFNets are not
very competitive with G-CNNs. The performance does not change monotonically
with the increasing size of the training set, the reason might be that we choose
the models that perform best on validation set to predict the test set. Small
validation set implies statistical uncertainty around the estimated average test
error and might not be representative for test set.

Table 3: Testing Results on Oral Cancer Dataset normalization by mean and
standard deviation calculated by training set.

Training Size H-Nets CFNet G-CNN Resnet50
10000 73.86% 67.92% 72.16% 71.81%
30000 76.58% 73.88% 73.26% 77.06%
50000 75.49% 72.96% 72.88% 73.99%

Table 4: Testing Results on Oral Cancer Dataset of normalization by mean and
standard deviation calculated by every image.

Training Size H-Nets CFNet G-CNN Resnet50
10000 75.25% 63.72% 72.35% 67.55%
30000 76.01% 61.13% 73.40% 72.03%
50000 75.18% 65.87% 71.55% 76.03%
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Figure 7: Classification accuracy on Oral Cancer Dataset of H-Nets with two
normalization strategies used. normalization 1 denotes normalization by mean and
standard deviation calculated by training set and normalization 2 is normalization
by mean and standard deviation calculated by every image.
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Figure 8: Classification accuracy on Oral Cancer Dataset of CFNet with two
normalization strategies used. normalization 1 denotes normalization by mean and
standard deviation calculated by training set and normalization 2 is normalization
by mean and standard deviation calculated by every image.
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Figure 9: Classification accuracy on Oral Cancer Dataset of G-CNN with two
normalization strategies used. normalization 1 denotes normalization by mean and
standard deviation calculated by training set and normalization 2 is normalization
by mean and standard deviation calculated by every image.
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Figure 10: Classification accuracy on Oral Cancer Dataset of Resnet50 with two
normalization strategies used. normalization 1 denotes normalization by mean and
standard deviation calculated by training set and normalization 2 is normalization
by mean and standard deviation calculated by every image.

4 Discussion and Future Work

The experiments presented here show that rotation equivariant and/or invariant
CNNs do improve image classification with computational overhead. H-Nets ex-
hibit good performance for both the rotated MNIST and the Oral Cancer Dataset
and are not very sensitive to data pre-processing methods. However they require
much more training time even with a simple architecture. G-CNNs are very com-
petitive with H-Nets. They perform nearly as good as H-Nets but are much faster.
With complex and huge datasets, the time saving might be significant. CFNets are
supposed to be faster than G-CNNs meanwhile performing as good as G-CNNs.
However, based on our experiments, with similar architecture, CFNets take more
time and predict with less accuracy meanwhile they are very sensitive to pre-
processing methods.

None of the models reached the current state of the art accuracy of 77.7%,
but they all, and H-Net in particular, perform very well on Oral Cancer Dataset.
The relatively low state-of-the-art accuracy may be caused by weak labeling of the
dataset: the samples are labeled on the patient level, and not on the cell level. In
reality, a patient with a cancer diagnosis probably also has healthy cells.
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In the future, given time and resources such as high performance GPUs, we
plan to apply the rotation equivariant and/or invariant methods to state-of-art
CNN models such as Resnet, Lenet to explore if we can reach higher classification
accuracy.
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