
Department of Information Technology

Scale-invariant CNNs

Implementation and performance analysis of
di�erent approaches

Ruoqi Zhang & Wei Peng

Project in Computational Science: Report

Jan 2020

P
R
O
J
E
C
T
R
E
P
O
R
T

Abstract

Convolutional neural networks(CNNs) have achieved excellent results on image classification
tasks on large datasets like ImageNet [1], MS COCO [2] and Open Images [3]. The success
of CNNs is from their ability to learn complex patterns by feature maps in the layers. But
CNNs have no mechanism to fit different scales. Here, we implement and evaluate four
different networks and compare their performance with two baselines on three different
datasets: MNIST, FMNIST and OralCancer. In order to test the ability of scale-invariance,
we use unscaled dataset as training data and scaled dataset as test data. The results show
that standard CNN with adequate data augmentation has the best performance. Except
that, significant improvements can be observed using locally scale-invariant convolutional
neural networks (SI-ConvNet) compared with standard CNN without data augmentation
method. Scale steerable filters for locally scale-invariant convolutional neural networks
(SS-CNN) replace the kernels in the SI-ConvNet to avoid interpolation artifacts but they
need more time to converge and the performance is not better than that of SI-ConvNet.
We also add blur pool for SI-ConvNet and SS-CNN in order to improve the accuracy on
OralCancer. Blur pool is simple to implement and does not increase the training time,
however the results did not show any improvement.

Contents

1 Introduction 1

2 Background 2
2.1 Equivariance and Invariance . 2

2.1.1 Shift-equivariance and shift-invariance 2
2.1.2 Scale-equivariance and scale-invariance 2

2.2 Locally Scale-Invariant Convolutional Neural Networks 2
2.3 Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks 3

2.3.1 Scale-steerable filters . 3
2.3.2 Scale-invariant CNNs with scale steered weights 4

2.4 Anti-aliased Convolutional Neural Networks 5

3 Datasets 7
3.1 MNIST and MNIST-Scale . 7
3.2 FMNIST and FMNIST-Scale . 7
3.3 OralCancer and OralCancer-Scale . 8

4 Experiment 8
4.1 Experiment Design . 9
4.2 Experimental Results . 10

4.2.1 MNIST . 10
4.2.2 FMNIST . 11
4.2.3 Oral Cancer . 11

5 Discussion 13

6 Conclusion and Future Work 14

1 Introduction

Convolutional neural networks(CNNs) have achieved excellent results on image classification
tasks on large datasets like ImageNet [1], MS COCO [2] and the Open Images [3]. The
success of CNNs is related to their ability to learn complex patterns by feature maps in the
layers. But CNNs have no mechanism to fit different scales. So, to detect simple patterns
at different scales, they have to learn different filters to obtain feature maps for different
scales. Unfortunately, it is not easy to do so. The networks need more filters, which means
the number of parameters increases and this makes it harder to train.

In this project, we implement four different scale-invariant networks and compare their
performance with two baselines. Baseline1 is a standard CNN and Baseline2 is a standard
CNN with data augmentation. The four different networks, which incorporate scale invariance
property in the network architecture in different ways, are SI-ConvNet [4], SS-CNN [5],
Antialised-SIConvNet [4][6] and Antialised-SSCNN [5][6]. The SI-ConvNet applies filters to
multiple scaled versions of the input in each convolution layer, and obtains a scale-invariant
representation through max-pooling over scales. The SS-CNN is constructed based on SI-
ConvNet, but replaces the filters with a linear combination of the proposed scale steerable
basis filters. Then the replaced filters are steered to different sizes to convolve with the input,
and the responses are max-pooled over scales. The Antialised-SIConvNet is designed with an
aim to integrate classic anti-aliasing method into the downsampling strategies of SI-ConvNet,
and similar operations are performed for Antialised-SSCNN.

We then evaluate the methods on three datasets: MNIST-Scale, FMNIST-Scale and OralCancer-
Scale. The datasets are scaled versions of MNIST [7], FMNIST [8] and OralCancer [9]. Also,
in order to test the ability of scale-invariance, we use unscaled dataset as training data and
scaled dataset as test data. This is different from the experiments, done in the original papers
and, thus, we observe different results. The results show that standard CNN with adequate
data augmentation have the best performance. Except that, significant improvements can be
observed using SI-ConvNet compared to Baseline1. As for SS-CNN, given more epochs, it
can perform better than Baseline1 but still not as good as SI-ConvNet. The two networks
integrated with anti-aliasing methods do not show obvious difference either in accuracy or
training time compared with the same architectures without anti-aliasing.

The rest of the paper is organized as follows. In Section 2, the scale-invariant networks used
in this project are briefly introduced, and the principles of how they work are also illustrated.
In Section 3, the datasets used to evaluate the networks are presented with some examples
shown, and the process of how the scaled versions of datasets are produced is also explained.
In Section 4, the design of the experiment is introduced and the results are represented. The
discussion of the results is included in Section 5, and finally conclusion and future work are
discussed in Section 6.

1

2 Background

2.1 Equivariance and Invariance

2.1.1 Shift-equivariance and shift-invariance

A function F̃ is shift-equivariant if the shifting operation applied to the input is equally added
on the output:

F̃ (Shift∆h,∆w(X)) = Shift∆h,∆w(F̃ (X)) for all (∆h,∆w). (1)

In other words, if a function F̃ is shift-equivariant, the result of first shifting the input X with
height ∆h and width ∆w then applying F̃ will be the same as first applying F̃ on the input
X then shifting with height ∆h and width ∆w.

A function F̃ is shift-invariant if the shifting operation applied to the input does not influence
the output:

F̃ (Shift∆h,∆w(X)) = F̃ (X) for all (∆h,∆w). (2)

In the continuous case, convolution is shift-invariant by definition, which ensures that the
filter responses do not depend on the position. This property is, however, only approximated
in the discrete case, i.e., when CNNs are applied to discrete image functions, as discussed by
Zhang [6].

2.1.2 Scale-equivariance and scale-invariance

Similarly, a function F̃ is scale-equivariant if scaling the input X with a scale factor s equally
scales the output:

F̃ (Scales(X)) = Scales(F̃ (X)) for all s. (3)

A function F̃ is scale-invariant if scaling the input X results in an identical representation:

F̃ (Scales(X)) = F̃ (X) for all s. (4)

The common solution to achieve scale-invariance is through data augmentation, where scaling
transformations are applied to the existing training set with an aim to capture scale variability
expected in the test set and incorporate it in the training set.

2.2 Locally Scale-Invariant Convolutional Neural Networks

In [4], the authors propose a scale-invariant convolutional neural network (SI-ConvNet) that
allows CNNs to learn discriminative features without increasing the number of parameters.

To make the CNN learn patterns at multiple scales, the authors build the scale-invariance
at the layer level based on the standard CNN. Figure 1 shows the layer comparison of a
CNN and the proposed SI-ConvNet. In a scale-invariant convolution layer, first the input is
scaled to different sizes, and then each of the scaled input is convolved with one same filter
producing feature maps at different scales. To normalize the feature maps, each of them is
rescaled to a canonical size. Finally, the rescaled feature maps are aligned and max-pooled,

2

and only the maximum responses at each spatial location are preserved. In this way, a locally
scale-invariant representation is produced and sent to the next layer in the same size as the
output of a standard convolution layer.

Figure 1: Side-by-side comparison of the structure of a convolution layer and the proposed
scale-invariant convolution layer [4].

In the training process, scaling the input to n different sizes is analogous to increasing the
number of feature maps by n times, because convolving the n scaled input images with a
single filter is similar to convolving a single input image with n filters of different sizes. Thus,
the SI-ConvNet can be trained without adding more parameters.

2.3 Scale Steerable Filters for Locally Scale-Invariant Convolutional Neu-
ral Networks

In [5], Ghosh and Gupta propose a scale-steerable filter basis for the locally scale-invariant
CNN [4] based on the rotation steerable filters. They also introduce a scale-steered kernel
through the linear combination of the scale-steerable basis filters. By replacing the kernels
with scale-steered kernels, they improve the scale-invariance of CNNs.

2.3.1 Scale-steerable filters

Based on the rotation steerable filters in the form of circular harmonics [10], Ghosh and Gupta
[5] construct the scale-steerable filters in the form, W (r, φ) = Φ(φ)F (log r)/rm. They are
expressed in polar coordinates. Φ(φ) is of Gaussian form, with mean of φj and standard
deviation of σφ. F (log r) is a complex function of unit norm, ei(k(log r)+β), with filter order k
and phase β. Thus, the proposed mathematical form of a scale-steerable basis filter is

Skj(r, φ) =
1

rm
(K(φ, φj) +K(φ, φj + π))ei(k(log r)+β), (5)

3

where K(φ, φj) = e−d(φ,φj)
2/2σ2

φ , with d(φ, φj) equal to the distance between the two angles φ
and φj . Examples of scale-steerable basis filters constructed from Equation (5) are shown in
Figure 2.

Figure 2: Scale-steerable basis filters for selected orientations and filter orders and m = 1 [5].

In order to prove the scale steerability of the basis filters, Ghosh and Gupta [5] propose and
prove the following theorem:

Theorem 1 Given a circular input patch I(a) within a larger image, which is defined within
the x, y range of 0 ≤

√
x2 + y2 ≤ a. Let Is(a) denote the same patch when the image was

scaled around the centre of the patch by a factor of s. We then have

[Is(a) ? Skj(a)] = sm−2e−i(k log s)[I(as) ? Skj(as)], (6)

where ? is the cross-correlation operator.

From Equation (6) we can find that, if we want to compute the cross-correlation between the
scaled image Is and the filter Skj , the result will be the same to compute the cross-correlation
between the original image I and the filter Skj , multiplied by some complex coefficients.

With the scale-steerable basis filters Skj , Ghosh and Gupta [5] construct a filter W through
a linear combination of Skj , s.t. W =

∑
k,j ck,jS

k,j , where ck,j ∈ C. Due to the linear
combination, the scale steerability is preserved in W , and we can steer the scale of W (a) on
the range of radii a by a scale factor s:

W s(as) = sm−2
∑
k

e−ik log s
(∑

j

ckjS
kj(as)

)
. (7)

Note that only the real part of W s(as) is used in the network.

2.3.2 Scale-invariant CNNs with scale steered weights

The scale-invariant CNN with scale steerable filters is described as Scale-Steered CNN (SS-
CNN), and a proposed scale-invariant layer is shown in Figure 3. Firstly the scale-steerable
basis Skj is linearly combined as filter W and then W is scaled to different sizes using

4

Equation (7). Each of the scaled filters is convolved with the same input and generates
different feature maps. Finally through max-pooling over scales, only the maximum response
at each spatial location are preserved and sent to the next layer as input. In the whole training
process, the network only learns the coefficients ckj .

Figure 3: The proposed scale-invariant layer with scale-steered filters [5].

2.4 Anti-aliased Convolutional Neural Networks

Modern convolutional neural networks are not shift-invariant as a small shift in the input
images may lead to a totally different output. This is because of the downsampling operations,
for example, pooling methods and convolution operation. In [6], Zhang offers a method
reconciling antialiasing with existing downsampling methods to improve the shift-invariance
of CNNs.

MaxPool→MaxBlurPool The max-pooling of kernel size k and stride s can be divided
into two functions sequentially as shown in Figure 4. The input is max-pooled densely with
kernel size k, and then the results are subsampled from the immediate feature map with stride
s. The max-pooling operation can be written as the following equation:

MaxPoolk,s = Subsamples ◦Maxk, (8)

where ◦ is a composition of two functions.

But actually the max operation in the first step preserves the shift-invariance as it is operated
in a dense sliding window way. It is the subsequent subsampling that loses the shift-invariance.
Zhang [6] proposes to add an anti-aliasing filter with blur kernel to reduce aliasing. As shown
in Figure 5, after the max operation densely applied to the input, the feature map is convolved
with a m×m kernel to low-pass filter the intermediate signal and then subsample from the
result. In this way, the shift-equivariance is better preserved. The combination of blurring

5

Figure 4: Max-Pooling and its equivariant interpretation [6].

and subsampling is denoted as BlurPoolm,s, and the proposed max-pooling method can be
written as:

MaxPoolk,s → Subsamples ◦ Blurm ◦Maxk

= BlurPoolm,s ◦Maxk.
(9)

Figure 5: Anti-aliased max-pooling [6].

StridedConv→ConvBlurPool Strided-convolutions suffer from the same problem as max-
pooling. Therefore, the same method is used to fix this:

Relu ◦ Convk,s → BlurPoolm,s ◦ Relu ◦ Convk,1. (10)

AveragePool→BlurPool Average-pooling is replaced by BlurPool:

AvgPoolk,s → BlurPoolm,s. (11)

Filter selection The blur kernel can be chosen for different sizes. In [6], Zhang tests the
size m from 2 to 5 with increasing smoothing. The filters are produced in two steps. The
first step is to calculate the outer product of 3 types of vectors with themselves: Rectangle-2
[1, 1], Triangle-3 [1, 2, 1] and Binomial-5 [1, 4, 6, 4, 1]. The second step is normalization. In our

6

experiment, Triangle-3 vector is selected, and the corresponding blur kernel looks as follows:

0.0625 0.125 0.0625
0.125 0.25 0.125
0.0625 0.125 0.0625

 .

3 Datasets

3.1 MNIST and MNIST-Scale

MNIST [7] is a handwritten digit classification dataset and has been used as a benchmark to
evaluate many classification algorithms. As shown in Figure 6a, all the images are 28× 28
gray-scale, with labels in 0-9 corresponding to the digit 0-9. In order to evaluate the scale-
invariance of the networks, each image is randomly scaled by a factor s ∈ (0.3, 1), producing
the dataset MNIST-Scale. Figure 6b shows some examples of MNIST-Scale.

(a) MNIST (b) MNIST-Scale

Figure 6: Datasets: MNIST and MNIST-Scale.

3.2 FMNIST and FMNIST-Scale

Fashion-MNIST [8] (FMNIST) is used as a drop-in replacement of MNIST. It is more complex,
and can represent the modern computer vision tasks better than MNIST. As shown in Figure
7a, it consists of 28 × 28 gray-scale images, and each image is assigned to a label in 0-9,
corresponding to the 10 classes: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot. Similar to MNIST-Scale, the scale transformation with factor
s ∈ (0.7, 1) is applied on FMNIST to create FMNIST-Scale dataset. Figure 7b shows some
examples of FMNIST-Scale.

7

(a) FMNIST (b) FMNIST-Scale

Figure 7: Datasets: FMNIST and FMNIST-Scale.

3.3 OralCancer and OralCancer-Scale

OralCancer [9] contains images of oral cells collected from patients with oral cancer and healthy
people. All the images are of size 80×80×3, with labels of healthy or cancer. Figure 8a shows
some examples of each class. Note that all the cells from patients with cancer are labelled
as cancer cells. We choose to zoom in the cells to create OralCancer-Scale dataset because
the background is not simply black or white, and scaling the cells to smaller size will lead
to images with inconsistent background affecting the network training. So, we use a scale
factor bigger than 1, which is opposite in MNIST and FMNIST. As shown in Figure 8b, all
the images are scaled by a factor s ∈ (1, 1.3).

(a) OralCancer (b) OralCancer-Scale

Figure 8: Datasets: OralCancer and OralCancer-Scale

4 Experiment

All the experiments are run on an Intel core-i9 server with a GeForce RTX 2080 Ti graphics
processing card. Our implementation code for the experiments is available at https://github.

8

https://github.com/wsgdrfz/Scale-invariant-CNNs
https://github.com/wsgdrfz/Scale-invariant-CNNs

com/wsgdrfz/Scale-invariant-CNNs.

4.1 Experiment Design

We find that most of the network evaluations are performed with only the scaled dataset
for both training and test [4][5]. With the purpose to replicate their work, we follow the
papers and build the networks: Standard-CNN (works as baseline), SI-ConvNet, SS-CNN,
and Antialiased-SS-CNN (combination of the anti-aliased CNN with SS-CNN). Consistent to
the experiments in [5], all the networks are with the architecture of three convolutional layers
and two fully connected layers, and the networks are trained and tested on MNIST-Scale
dataset. We also change the training size from 1k to 10k in order to evaluate the scalability
of the networks, as we are interested in the relationship between the training size and the
performance of the networks. The test size is fixed to 50k. After training for 300 epochs, the
average test accuracy over 6 splits with respect to different training size is shown in Figure 9.

Figure 9: Average test accuracy on MNIST-Scale of different networks.

From Figure 9, all the networks perform quite well with lowest accuracy over 91% and the
performance is better when the training size increases. But it is really hard to distinguish
the performance of the networks except Baseline. We hypothesize that training on the scaled
dataset is affected by data augmentation to a certain degree. In order to deal with variations in
the test set which may not be captured in the training set, data augmentation adapts method
of increasing the training data by generating data expected to be in the test set, whereas the
observed approach here is to equip the network architecture to compensate for that potential
deficiency in the training data. We are interested in whether the scale-invariant networks can
solve more realistic tasks by their designed properties, rather than by the ideal training set.
Thus, we decide to redesign the experiment.

9

https://github.com/wsgdrfz/Scale-invariant-CNNs
https://github.com/wsgdrfz/Scale-invariant-CNNs

We believe that it is possible to better evaluate the scale-invariance abilities of the networks if
they are trained on the original dataset and tested on the unseen scaled dataset. In this case
the classification tasks become more difficult and the variance of performance between the
networks will be more obvious. Therefore, we have the following experiment settings:

• For MNIST and FMNIST, we have four networks tested on the scaled datasets for
comparison. Standard-CNN as Baseline1, SI-ConvNet, SS-CNN, and standard-CNN
with data augmentation as Baseline2. Except the convolution layers are replaced by
corresponding scale-invariant layers, all the networks share the same architecture and
hyper-parameters. The selected architecture consists of three convolutional layers with
the number of feature maps of 30,60,90 and kernel size of 11×11, and each convolutional
layer is followed by max-pooling, ReLu and batch normalization. The subsequent layers
are two fully connected layers, one dropout layer and one soft-max logistic regression
layer. Except Baseline2, the other three networks are trained on the original MNIST and
FMNIST, with training size from 2k to 10k. Baseline2 adds the same amount of scaled
dataset, MNIST-Scale and FMNIST-Scale, into the training set, leading to the double
training size. All the networks are trained for 30 epochs and then tested on 10k scaled
data. The process is repeated over 6 splits and the training time, training accuracy and
test accuracy are recorded.

• For OralCancer, the networks settings are similar but more complex. Here we have
six networks: standard-CNN as Baseline1, standard-CNN with data augmentation
as Baseline2, SI-ConvNet, SS-CNN, SI-ConvNet combined with anti-aliased CNN as
Antialiased-SIConvNet, SS-CNN combined with anti-aliased CNN as Antialiased-SSCNN.
Analogous to MNIST & FMNIST, the architecture consists of five convolutional layers
with the number of feature maps of 30,60,90,120,150 and kernel size of 11× 11. Others
remains the same as in MNIST & FMNIST. Except Baseline2, the training sets of the
other five networks are randomly selected from the original OralCancer training set, with
training size from 10k to 50k. For Baseline2, the same amount of scaled images from the
training set of OralCancer-Scale are added to the training data, leading to the training
size from 20k to 100k. All the networks are trained for 10 epochs and then tested on 10k
data from the test set of OralCancer-Scale. In order to reduce anomalous results, the
process is repeated for 6 splits with different random seed for the generation of training
and test data. The training time, training accuracy and test accuracy are recorded.

4.2 Experimental Results

Here we only analyze the average results over six splits and the detailed tables with results
can be found in Section 6.

4.2.1 MNIST

As shown in Figure 10, it is obvious that Baseline2 has the highest accuracy rate of about
95%, and it performs much better than others. The results of SI-ConvNet and SS-CNN are
basically the same. Baseline1 performs the worst. Also, with the large increase in training
size, accuracy does not change significantly for all the four networks.

10

Figure 10: Results: Average test accuracy on MNIST-Scale over 6 splits. Note that the
training size of Baseline2 is as twice as others.

4.2.2 FMNIST

From Figure 11 we see that the results of Baseline2 are still the best for FMNIST with the
accuracy around 85%. It does not increase with the increase in training size. The gap between
Baseline2 and other networks is narrowed compared with MNIST. The second, third and fourth
places are SI-ConvNet, Baseline1 and SS-CNN. Among them, the accuracies of SI-ConvNet
and Baseline1 grow a lot when training size increases from 8k to 10k. In contrast, SS-CNN
performs the worse, and it even decreases a lot when training size increases from 8k to 10k.
We assume this is because SS-CNN does not converge within 30 epochs. In Table 8, the
training accuracy of SS-CNN is only around 0.85, while that of others are bigger than 95%.
To validate our hypothesis, we add one more experiment with 50 epochs for SS-CNN.

As shown in Table 9, the training accuracy of SS-CNN with 50 epochs increases to the same
level to that of other networks with 30 epochs, but the test accuracy is not as good as expected.
From Figure 12, the performance of SS-CNN with 50 epochs is still slightly lower than that
of SI-ConvNet with 30 epochs, which means SS-CNN does not show superiority even at the
sacrifice of more epochs and time.

4.2.3 Oral Cancer

As shown in Figure 13, the performance of the six networks is almost identical. It’s worth
noting that the range of y-axis is from 0.56 to 0.62, which is not a large range. Anomalous
results appear more often to Baseline1 and Antialiased-SIConvNet. From Table 10, the
training accuracy of Baseline1 is only around 30% on split 3 and split 5 with training size of
30k, leading to the test accuracy lower than 50% for the two splits. Similar anomaly is also
observed for Antialiased-SIConvNet with training size of 10k on split 1 and split 5, as shown
in Table 13. The anomalous results pull down the average performance of the two networks

11

Figure 11: Results: Average test accuracy on FMNIST-Scale over 6 splits. Note that the
training size of Baseline2 is as twice as others.

Figure 12: Result: Average test accuracy on FMNIST-Scale over 6 splits. Note that the
training size of Baseline2 is as twice as others.

and cause the instability.

From Figure 13 and Figure 14, it can be seen that adding BlurPool to the network does not
increase the training time nor improve the accuracy, but may cause instability. We assume
that the reason of the not obvious improvement is because the number of downsampling
operations in the networks are small, with only three max-pooling operations. Even in [6],
the increase for ResNet18 in accuracy after adding BlurPool is only about 2%. Therefore,
BlurPool is not recommended here for small networks. For the same training size, the time
that SS-CNN requires is one and a half times of that SI-ConvNet requires, but the accuracy is

12

Figure 13: Results: Average test accuracy on OralCancer over 6 splits. Note that the training
size of Baseline2 is as twice as others. Baseline2 only have data for 10k (20k) and 20k (40k)
here due to limited time.

Figure 14: Results: Average training time on OralCancer over 6 splits. Note that the training
size of Baseline2 is as twice as others. Baseline2 only have data for 10k (20k) and 20k (40k)
here due to limited time.

basically the same, so SS-CNN is more time-consuming for this task.

5 Discussion

Input Scaling vs Filter Scaling (SI-ConvNet vs SS-CNN) SI-ConvNet uses the most
direct and easiest method, that is to scale the input both smaller and larger compared with
the original size. After resizing feature maps to the same size, the outputs are the maximum
response at each location. This method is effective and very suitable for our experiments
because the training set are images with the same scaling while test set are images with
different scaling. But this method reshapes the images or feature maps twice, and it is easy to
produce interpolation artifacts. SS-CNN only steers the filters to different sizes without any
interpolation operations. But the interpolation artifacts only effect little on the test accuracy
considering the difference between performance of the two networks is little.

13

Data Augmentation vs Input Scaling (Baseline2 vs SI-ConvNet)) The data aug-
mentation technique used for our experiment is to scale each image in training set with a
random factor (each dataset has a specific scale range). From the results, the pattern learned
by a standard CNN with data augmentation is closer to the test set than the pattern learned
by SI-ConvNet through input scaling. But the gap narrows when the tasks become more
complicated (from MNIST to FMNIST). Scale-invariant networks are promising to catch up
or even exceed data augmentation in practical classification problems.

Shift-invariance In [6], the BlurPool is very simple to use and it improves the accuracy and
generalization of different testbeds, for example, VGG[11], ResNet[12] and DenseNet[13]. But
in our network, there are only three downsampling operations, that is three max-pooling layers.
Thus, the network itself does not lose much feature of shift-invariance, and in consequence the
improvement here is not obvious.

6 Conclusion and Future Work

In this study, we implement and compare the performance of different approaches that allow
scale-invariant feature learning and representation in convolutional neural networks. Our
baselines are standard CNNs and standard CNNs with data augmentation. It’s worth noting
that our training set is the images at the same scaling while test set are designed to have
different scales which is different to the original papers, in order to better evaluate the scale-
invariance ability of the networks. And our results are quite different too. SI-ConvNet [4] is
the method that is comprehensive and simple to implement, and it captures the features at
different scales through multiple scaled inputs. It is also the best networks except Baseline2
using data augmentation method in our experiment. The scale-steerable filters of SS-CNN [5]
help CNNs to have a higher degree of transformative weight sharing and this makes SS-CNN
a very promising network for difficult tasks although it need more epochs or time to converge.
We also try to integrate low-pass filtering to anti-alias here for SI-ConvNet and SS-CNN to
add the ability of shift-equivariance. Unfortunately, we observe no surprising boost in accuracy
but decrease in robustness which is quite different from the original paper. We assume that is
because all the networks only containing three downsampling layers (max-pooling) therefore
the shift-invariance is not lost too much.

Overall, data augmentation in training dataset is the most effective way. With limited
GPUs and time, SI-ConvNet would be a good choice. Interesting directions for future work
include more detailed experiments to find how the networks work. For example, visualize
the intermediate feature maps in different layer of network to check the multi-scale features.
Finding the solution for filling the background of scale-inword image can also be an option.
Now for MNIST and FMNIST we assume the background is black and we didn’t scale inward
images of OralCancer dataset. Besides, training with early stopping can be one solution for
the non-monotonic performance of the networks with increase in the training size. The same
number of epochs for different training size in this experiment probably affects the results by
under fitting at small training size and over fitting at large training size.

14

References

[1] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255, June 2009.

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In
European Conference on Computer Vision (ECCV), pages 740–755. Springer, 2014.

[3] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-
Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object detection, and visual
relationship detection at scale. arXiv preprint arXiv:1811.00982, 2018.

[4] Kanazawa Angjoo and Sharma Abhishek. Locally scale-invariant convolutional neural
networks. arXiv preprint arXiv:1412.5104, 2014.

[5] Rohan Ghosh and Anupam K Gupta. Scale steerable filters for locally scale-invariant
convolutional neural networks. arXiv preprint arXiv:1906.03861, 2019.

[6] Richard Zhang. Making convolutional networks shift-invariant again. In International
Conference on Machine Learning (ICML), 2019.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[8] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[9] Jiahao Lu, Nataša Sladoje, Christina Runow Stark, Eva Darai Ramqvist, Jan-Michaél
Hirsch, and Joakim Lindblad. A deep learning based pipeline for efficient oral cancer
screening on whole slide images. arXiv preprint arXiv:1910.10549, 2019.

[10] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5028–5037, 2017.

[11] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[13] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

15

Appendix

Table 1: MNIST-Scale: Standard-CNN(Baseline 1), epochs=30

2k 4k 6k 8k 10k
Split 0 training time 95.142 109.588 124.559 138.675 152.637

training 0.9945 1.0 1.0 0.99925 0.9996
test 0.4006 0.6255 0.705 0.6851 0.7113

Split 1 training time 95.255 109.436 123.857 138.399 152.035
training 1.0 0.9995 0.999667 1.0 0.9994
test 0.6615 0.6987 0.7155 0.7234 0.7023

Split 2 training time 95.738 109.172 123.518 138.705 151.749
training 1.0 1.0 1.0 0.9995 0.9995
test 0.6792 0.6614 0.705 0.7223 0.7121

Split 3 training time 94.812 109.494 123.751 138.404 153.106
training 1.0 0.999 1.0 0.999 0.9998
test 0.6652 0.687 0.7022 0.6989 0.7254

Split 4 training time 94.984 109.405 123.694 138.461 152.209
training 1.0 0.9985 1.0 1.0 0.9996
test 0.6422 0.6976 0.6555 0.7075 0.7231

Split 5 training time 95.050 109.420 124.183 138.303 152.417
training 1.0 1.0 1.0 1.0 0.9987
test 0.625 0.6798 0.7067 0.6754 0.6928

Average training time 95.10775 109.43875 123.87125 138.48475 152.3245
training 1 0.999625 1 0.999688 0.999525
test 0.648475 0.68145 0.704725 0.70345 0.7122

16

Table 2: MNIST-Scale: Standard-CNN(Baseline 2), epochs=30

4k 8k 12k 16k 20k
Split 0 training time 149.294 178.460 211.155 239.864 275.006

training 0.99975 0.998875 0.99325 0.973313 0.9829
test 0.9503 0.9641 0.9637 0.9503 0.9592

Split 1 training time 158.688 177.428 211.508 245.362 271.241
training 1.0 0.99875 0.989167 0.985 0.9867
test 0.9625 0.9675 0.9614 0.9625 0.9692

Split 2 training time 150.007 179.102 210.861 240.160 268.200
training 0.99725 0.994375 0.991917 0.9715 0.96635
test 0.9453 0.9527 0.9609 0.9509 0.9285

Split 3 training time 150.693 178.399 215.638 239.349 271.662
training 1.0 0.98975 0.993583 0.980875 0.98255
test 0.9561 0.9438 0.9642 0.9563 0.9588

Split 4 training time 148.911 177.685 210.593 240.320 268.302
training 0.998 0.99725 0.988583 0.983 0.97115
test 0.9527 0.9615 0.9569 0.9545 0.9452

Split 5 training time 149.624 178.294 209.587 239.228 271.482
training 0.997 0.9895 0.99125 0.967375 0.97425
test 0.9372 0.9426 0.9647 0.936 0.9488

Average training time 149.9045 178.2095 211.02925 239.92325 270.67175
training 0.99875 0.995031 0.991396 0.977172 0.977713
test 0.9511 0.955525 0.96255 0.953 0.953

Table 3: MNIST-Scale: SI-ConvNet, epochs=30

2k 4k 6k 8k 10k
Split 0 training time 426.193 735.863 1040.916 1346.358 1633.629

training 0.923 1.0 1.0 1.0 0.9992
test 0.4562 0.6921 0.7456 0.7021 0.7564

Split 1 training time 428.292 736.730 1038.050 1342.193 1647.501
training 1.0 1.0 0.999167 0.999875 0.9996
test 0.7152 0.7111 0.6857 0.7221 0.7429

Split 2 training time 426.272 733.781 1037.405 1341.546 1645.858
training 1.0 1.0 1.0 0.9995 0.9998
test 0.699 0.7441 0.7426 0.7425 0.7589

Split 3 training time 430.315 735.477 1037.850 1343.879 1648.142
training 1.0 1.0 0.999667 0.999375 0.9996
test 0.679 0.6681 0.7703 0.7282 0.7732

Split 4 training time 424.821 734.845 1036.647 1343.466 1646.699
training 1.0 0.99975 0.999833 1.0 0.9988
test 0.6944 0.7151 0.7317 0.7205 0.7319

Split 5 training time 430.252 731.479 1042.514 1343.013 1647.869
training 1.0 0.99975 1.0 0.999875 0.9987
test 0.6888 0.7145 0.7276 0.7609 0.7229

Average training time 427.75225 734.9915 1038.55525 1343.13775 1646.98175
training 1 0.999938 0.999875 0.999813 0.9993
test 0.6903 0.7082 0.736875 0.728325 0.747525

17

Table 4: MNIST-Scale: SS-CNN, epochs=30

2k 4k 6k 8k 10k
Split 0 training time 226.164 340.792 441.312 541.922 651.177

training 0.933 0.9995 0.999167 0.99875 0.9955
test 0.4786 0.7227 0.7349 0.7449 0.7571

Split 1 training time 229.124 334.070 441.907 541.421 647.883
training 1.0 0.9995 0.995 0.9975 0.9975
test 0.72 0.708 0.7124 0.7119 0.7134

Split 2 training time 226.252 333.353 443.156 545.089 649.657
training 0.998 0.99975 0.9995 0.997375 0.9964
test 0.7124 0.7485 0.7209 0.6961 0.7556

Split 3 training time 226.124 331.673 442.819 548.447 648.391
training 1.0 0.99925 0.9985 0.9985 0.9853
test 0.6537 0.7404 0.7064 0.7535 0.6608

Split 4 training time 226.269 332.111 442.841 544.210 646.957
training 1.0 0.999 0.9975 0.996375 0.9977
test 0.7432 0.7225 0.6872 0.7396 0.7455

Split 5 training time 226.350 337.715 438.834 544.038 650.369
training 1.0 1.0 0.999167 0.997625 0.9947
test 0.7366 0.6923 0.704 0.7377 0.7487

Average training time 226.25875 334.31225 442.21975 543.81475 649.075
training 0.9995 0.9995 0.998583 0.99775 0.996025
test 0.705675 0.7234 0.710925 0.733525 0.7408

Table 5: FMNIST-Scale: Standard-CNN(Baseline 1), epochs=30

2k 4k 6k 8k 10k
Split 0 training time 268.162 284.919 318.993 344.008 362.756

training 0.9865 0.98375 0.9805 0.98 0.96
test 0.7034 0.7152 0.7462 0.7282 0.7547

Split 1 training time 269.875 280.317 316.986 346.138 371.632
training 1.0 0.98575 0.991167 0.956625 0.9617
test 0.7618 0.761 0.7872 0.7118 0.7562

Split 2 training time 271.532 285.401 323.993 344.820 360.649
training 0.993 0.998 0.979333 0.9755 0.9703
test 0.6922 0.7568 0.706 0.7502 0.7631

Split 3 training time 276.179 283.555 321.246 339.873 357.763
training 0.996 0.9325 0.995833 0.980125 0.9632
test 0.7102 0.5825 0.7386 0.759 0.7159

Split 4 training time 271.148 285.693 314.884 338.797 359.458
training 0.9985 0.99575 0.9735 0.964375 0.9773
test 0.7639 0.7739 0.712 0.7176 0.7473

Split 5 training time 274.472 289.395 317.975 334.714 364.723
training 1.0 0.998 0.983667 0.961125 0.9618
test 0.7616 0.7393 0.792 0.683 0.769

Average training time 271.894667 284.88 319.012833 341.391667 362.830167
training 0.995667 0.982292 0.984 0.969625 0.965717
test 0.732183 0.72145 0.747 0.724967 0.751033

18

Table 6: FMNIST-Scale: Standard-CNN(Baseline 2), epochs=30

4k 8k 12k 16k 20k
Split 0 training time 155.697 178.567 211.100 245.327 272.472

training 0.9795 0.94875 0.930417 0.887375 0.9043
test 0.8651 0.8598 0.8773 0.8441 0.8806

Split 1 training time 150.329 177.895 209.836 240.294 271.467
training 0.9765 0.914875 0.907167 0.8981875 0.87045
test 0.8454 0.834 0.8507 0.8654 0.846

Split 2 training time 149.630 178.233 216.988 240.262 268.552
training 0.98625 0.929375 0.928917 0.9034375 0.90415
test 0.8504 0.8447 0.86 0.8556 0.8614

Split 3 training time 149.592 176.941 210.264 239.126 271.387
training 0.9945 0.917625 0.890583 0.882875 0.865
test 0.8581 0.8351 0.8389 0.8384 0.8453

Split 4 training time 149.007 178.619 210.024 239.593 268.566
training 0.97825 0.94575 0.888333 0.917375 0.88315
test 0.8556 0.843 0.8205 0.8706 0.8547

Split 5 training time 149.788 178.719 209.070 239.636 270.784
training 0.98825 0.953375 0.915417 0.902375 0.89485
test 0.8373 0.8556 0.8453 0.8511 0.8593

Average training time 149.83475 178.3285 210.306 239.94625 270.551
training 0.983063 0.935375 0.910521 0.897844 0.88815
test 0.852375 0.8446 0.848725 0.85405 0.85535

Table 7: FMNIST-Scale: SI-ConvNet, epochs=30

2k 4k 6k 8k 10k
Split 0 training time 368.074 487.033 628.986 756.271 1029.080

training 0.943 0.9825 0.968833 0.958375 0.9282
test 0.6948 0.7816 0.7825 0.7505 0.8063

Split 1 training time 363.155 488.651 627.083 754.194 1013.374
training 0.97 0.9785 0.981667 0.93925 0.9451
test 0.7686 0.7615 0.7752 0.76 0.9451

Split 2 training time 369.243 488.132 636.018 750.251 880.595
training 1.0 0.99 0.974 0.9635 0.9027
test 0.7852 0.7454 0.7832 0.749 0.7662

Split 3 training time 371.423 488.928 628.737 750.411 876.455
training 0.999 0.989 0.97 0.97225 0.9456
test 0.7759 0.7755 0.7353 0.7541 0.7538

Split 4 training time 362.387 486.089 623.922 752.269 879.170
training 1.0 0.9905 0.9815 0.942375 0.9471
test 0.7843 0.7718 0.7756 0.7112 0.7978

Split 5 training time 369.081 485.961 611.296 753.668 872.336
training 0.998 0.9975 0.993833 0.98375 0.9674
test 0.7828 0.78 0.7562 0.7965 0.7725

Average training time 367.227167 487.465667 626.007 752.844 925.168333
training 0.985 0.988 0.9783056 0.959917 0.93935
test 0.765267 0.7693 0.768 0.75355 0.80695

19

Table 8: FMNIST-Scale: SS-CNN, epochs=30

2k 4k 6k 8k 10k
Split 0 training time 365.390 473.281 611.236 715.541 826.784

training 0.7355 0.904 0.867833 0.878875 0.8377
test 0.6617 0.7667 0.687 0.6988 0.6496

Split 1 training time 373.874 476.682 608.118 714.985 886.549
training 0.767 0.884 0.843 0.894625 0.8245
test 0.6346 0.7461 0.6919 0.7127 0.671

Split 2 training time 370.705 476.473 595.429 716.143 821.481
training 0.928 0.81525 0.896333 0.898125 0.7708
test 0.745 0.5821 0.7775 0.7367 0.593

Split 3 training time 356.427 472.439 599.584 714.149 821.911
training 0.926 0.825 0.82 0.884625 0.8103
test 0.7414 0.591 0.6524 0.7238 0.6066

Split 4 training time 365.223 474.715 594.581 717.827 855.627
training 0.8685 0.90325 0.862167 0.868125 0.8591
test 0.7586 0.7171 0.6786 0.7211 0.6909

Split 5 training time 371.412 474.278 587.673 717.328 835.653
training 0.9255 0.88875 0.8255 0.867875 0.8893
test 0.7175 0.7165 0.748 0.6602 0.7267

Average training time 367.171833 474.644667 599.436833 715.9955 841.334167
training 0.858417 0.870042 0.852472 0.882042 0.83195
test 0.7098 0.686583 0.7059 0.708883 0.6563

Table 9: FMNIST-Scale: SS-CNN, epochs=50

2k 4k 6k 8k 10k
Split 0 training time 310.670 484.474 659.103 834.024 1005.363

training 0.928 0.987 0.968333 0.917875 0.9562
test 0.6988 0.7949 0.7694 0.7081 0.7418

Split 1 training time 310.959 484.401 659.517 832.840 1007.711
training 0.9845 0.98 0.919667 0.94475 0.9336
test 0.7776 0.764 0.7818 0.7797 0.7421

Split 2 training time 310.993 484.581 658.927 833.209 1006.552
training 0.993 0.98825 0.953333 0.939125 0.9252
test 0.7311 0.7435 0.7498 0.7521 0.7107

Split 3 training time 310.741 484.881 658.986 832.710 1006.849
training 0.9985 0.97925 0.914667 0.933875 0.9347
test 0.7548 0.7648 0.7467 0.7765 0.7765

Split 4 training time 310.870 484.781 658.736 834.008 1007.109
training 0.9865 0.9855 0.937833 0.945625 0.8703
test 0.7402 0.7654 0.7546 0.7794 0.7313

Split 5 training time 311.352 484.621 659.125 833.223 1006.846
training 0.9975 0.9885 0.952833 0.955875 0.9415
test 0.7579 0.7055 0.7779 0.7106 0.7679

Average training time 310.930833 484.623167 659.065667 833.335667 1006.738333
training 0.981333 0.98475 0.941111 0.939521 0.926917
test 0.7434 0.75635 0.763367 0.751067 0.74505

20

Table 10: OralCancer-Scale: Standard-CNN(Baseline 1), epochs=10

10k 20k 30k 40k 50k
Split 0 training time 190.191 305.882 446.300 1007.052 713.877

training 0.7215 0.71595 0.715133 0.7142 0.71504
test 0.607 0.607 0.607 0.607 0.607

Split 1 training time 169.607 310.728 449.570 792.370 721.895
training 0.7137 0.73245 0.711567 0.711675 0.71224
test 0.6008 0.611 0.6008 0.6008 0.6008

Split 2 training time 167.045 307.264 447.834 797.274 714.525
training 0.707 0.7097 0.711067 0.71125 0.71246
test 0.6007 0.6007 0.6007 0.6007 0.6007

Split 3 training time 169.632 308.008 449.801 811.174 720.330
training 0.7556 0.7098 0.289933 0.7119 0.71314
test 0.6406 0.5959 0.4079 0.5959 0.5959

Split 4 training time 167.879 311.029 583.129 807.047 718.025
training 0.7058 0.7091 0.711 0.71335 0.7147
test 0.6026 0.6026 0.6026 0.6026 0.6026

Split 5 training time 167.928 310.131 816.513 587.976 721.111
training 0.7147 0.71435 0.3113 0.7159 0.71632
test 0.6096 0.6096 0.4673 0.6096 0.6096

Average training time 168.7615 309.03275 482.5835 801.96625 718.49775
training 0.714225 0.71245 0.611233 0.712781 0.713835
test 0.605 0.604975 0.56785 0.602775 0.602775

Table 11: OralCancer-Scale: SI-ConvNet, epochs=10

10k 20k 30k 40k 50k
Split 0 training time 441.137 813.011 1206.097 1960.244 1978.224

training 0.7215 0.71595 0.715133 0.7142 0.71504
test 0.607 0.607 0.607 0.607 0.607

Split 1 training time 423.699 816.390 1211.750 1796.212 1988.791
training 0.7318 0.7131 0.711567 0.711675 0.49086
test 0.6131 0.6008 0.6008 0.6008 0.6757

Split 2 training time 423.913 811.499 1211.583 1797.645 1972.464
training 0.707 0.7097 0.711067 0.71125 0.71246
test 0.6007 0.6007 0.6007 0.6007 0.6007

Split 3 training time 424.244 816.884 1205.091 1817.141 1989.915
training 0.7162 0.7098 0.710633 0.7119 0.71314
test 0.5978 0.5959 0.5959 0.5959 0.5959

Split 4 training time 421.597 812.453 1368.251 1805.582 1974.030
training 0.7058 0.7091 0.4888 0.71335 0.7147
test 0.6026 0.6029 0.682 0.6026 0.6026

Split 5 training time 422.764 816.482 1535.258 1600.925 1977.998
training 0.7188 0.71435 0.715267 0.381825 0.71632
test 0.6136 0.6096 0.6096 0.5931 0.6096

Average training time 423.655 814.584 1249.42025 1804.145 1979.76075
training 0.715875 0.711738 0.7121 0.712044 0.713835
test 0.60585 0.60285 0.604525 0.6 0.604975

21

Table 12: OralCancer-Scale: SS-CNN, epochs=10

10k 20k 30k 40k 50k
Split 0 training time 629.207 1206.823 1797.130 2620.347 2967.679

training 0.7215 0.28405 0.715133 0.7142 0.71504
test 0.607 0.393 0.607 0.607 0.607

Split 1 training time 618.981 1208.119 1799.127 2611.689 2972.679
training 0.7285 0.7131 0.711567 0.72415 0.71224
test 0.6097 0.6008 0.6008 0.6087 0.6008

Split 2 training time 620.018 1207.594 1802.444 2613.277 2972.914
training 0.7077 0.7097 0.748467 0.71125 0.58218
test 0.6046 0.6007 0.6327 0.6007 0.6511

Split 3 training time 619.387 1212.843 1800.283 2631.140 2980.723
training 0.7162 0.7144 0.710633 0.7119 0.42352
test 0.5959 0.6015 0.5959 0.5959 0.3042

Split 4 training time 619.421 1207.923 2087.730 2622.263 2973.650
training 0.7058 0.7091 0.711 0.71335 0.7147
test 0.6026 0.6026 0.6026 0.6026 0.6026

Split 5 training time 618.460 1210.100 2182.020 2393.361 2977.325
training 0.7147 0.71435 0.755433 0.344725 0.71632
test 0.6096 0.6096 0.6438 0.5279 0.6096

Average training time 619.45175 1208.434 1872.396 2616.894 2974.142
training 0.715025 0.711563 0.721542 0.712675 0.68104
test 0.60595 0.6014 0.610775 0.60155 0.605

Table 13: OralCancer-Scale: Antialiased-SIConvNet, epochs=10

10k 20k 30k 40k 50k
Split 0 training time 426.295 822.862 1219.535 1822.042 1994.075

training 0.7295 0.7472 0.715133 0.7142 0.71504
test 0.6141 0.6391 0.607 0.607 0.607

Split 1 training time 428.116 829.092 1224.414 1819.404 2012.590
training 0.287 0.7131 0.711567 0.711675 0.71224
test 0.4014 0.6008 0.6008 0.6008 0.6008

Split 2 training time 427.845 825.258 1224.863 1819.374 2000.565
training 0.707 0.7097 0.711067 0.71125 0.71246
test 0.6007 0.6007 0.6007 0.6007 0.6007

Split 3 training time 427.671 825.501 1221.805 1830.955 2019.690
training 0.7162 0.7098 0.710633 0.7119 0.71314
test 0.5959 0.5959 0.5959 0.5959 0.5959

Split 4 training time 427.079 822.911 1519.959 1806.814 2005.133
training 0.7058 0.7091 0.711 0.73645 0.7147
test 0.6026 0.6026 0.6026 0.6205 0.6026

Split 5 training time 427.564 827.989 1566.681 1616.256 2014.166
training 0.3136 0.7542 0.6873 0.7159 0.71632
test 0.4645 0.6451 0.5421 0.6096 0.6096

Average training time 427.53975 825.41475 1297.76025 1816.9085 2008.1135
training 0.61065 0.71995 0.711067 0.713419 0.713835
test 0.565925 0.6108 0.6 0.604525 0.602775

22

Table 14: OralCancer-Scale: Antialiased-SSCNN, epochs=10

10k 20k 30k 40k 50k
Split 0 training time 624.381 1219.556 1811.700 2624.714 2988.673

training 0.7215 0.71595 0.767767 0.7142 0.71504
test 0.607 0.607 0.6194 0.607 0.607

Split 1 training time 626.136 1221.786 1816.186 2631.083 3003.408
training 0.62 0.7289 0.711567 0.288325 0.71224
test 0.6982 0.6587 0.6008 0.3992 0.6008

Split 2 training time 625.946 1219.217 1818.662 2640.099 3003.499
training 0.707 0.62375 0.711067 0.71125 0.71246
test 0.6007 0.4015 0.6007 0.6007 0.6007

Split 3 training time 625.523 1221.530 1836.373 2644.048 3001.036
training 0.7162 0.7098 0.710633 0.7119 0.71314
test 0.5959 0.5959 0.5959 0.5959 0.5959

Split 4 training time 624.979 1216.846 2167.596 2414.513 3002.050
training 0.7058 0.74565 0.739033 0.714125 0.71464
test 0.6026 0.632 0.6488 0.6055 0.6026

Split 5 training time 625.077 1222.270 2197.721 2409.355 3001.924
training 0.7147 0.6981 0.376367 0.7159 0.71662
test 0.6096 0.565 0.56 0.6096 0.6119

Average training time 625.38125 1220.52225 1909.70425 2577.60225 3002.1045
training 0.710925 0.713188 0.718075 0.712869 0.71382
test 0.604975 0.599975 0.6042 0.602275 0.602775

23

	Introduction
	Background
	Equivariance and Invariance
	Shift-equivariance and shift-invariance
	Scale-equivariance and scale-invariance

	Locally Scale-Invariant Convolutional Neural Networks
	Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks
	Scale-steerable filters
	Scale-invariant CNNs with scale steered weights

	Anti-aliased Convolutional Neural Networks

	Datasets
	MNIST and MNIST-Scale
	FMNIST and FMNIST-Scale
	OralCancer and OralCancer-Scale

	Experiment
	Experiment Design
	Experimental Results
	MNIST
	FMNIST
	Oral Cancer

	Discussion
	Conclusion and Future Work

