

Simon Bethdavid simon.bethdavid.9232@student.uu.se

Simon Blomberg

simon.blomberg.8080@student.uu.se

Simon Hellman

simon.hellman.7521@student.uu.se

Supervisor

Riccardo Risuleo Department of Information Technology

UL contact

Björn Schulte-Herbrüggen Kollektivtrafikförvaltningen UL

Real-Time Forecasting of Bus Arrivals Using GPS-Data

Objectives

- Produce an accurate model to forecast bus arrivals in real-time using GPS-data
- Optimize for one line (line 5)
- Mean average error < 70 seconds
- Scalable

Introduction

In collaboration with UL, we intend to produce bus arrival forecasts that can compete with previous work and current systems. Compared to Are we there yet? [1], we use real-time GPS data, this in order to investigate whether more detailed data will give higher performance for the arrival forecasts.

Neural Network

- 2 Dense layers (each of size 100)
- ReLU activation
- Output Arrival time in seconds
- Batch normalization
- Custom loss functions
 - Truncated loss
- Asymmetric loss

Input Parameters

Except GPS-data the model uses various other input parameters. They are used in order to capture other phenomena that influences how long it will take for a bus to travel a specific distance.

- Time since start of trip
- Time of day
- Day of week
- Travel time of previous buses
- Precipitation
- Temperature

GPS-Data Preprocessing

- Extract and clean data from files
- Extract line 5
 - Geofence GPS-coordinates to first and last bus stop in line 5
- Convert GPS-coordinates to trip progress
 - Project bus position to closest line segment
 - Calculate distance on that segment
 - Sum previous segment lengths and how far the bus has traveled on the closest segment

Prediction Results

	Neural Network	Random Forest	Linear Regression
MAE (seconds)	63	69	70
Accuracy* (%)	59	54	55

*A correct prediction is defined as arriving within 60 seconds.

Future Work

- More data
- Recurrent Neural Network
- Additional input features
 - Traffic conditions
 - Number of bus stops
 - Number of traffic lights

References

[1] Johan Rideg, Max Markensten, 2019, 'Are we there yet?: Prediciting bus arrival times with an artificial neural network', (Unpublished Bachelor Thesis), Uppsala Universitet, Uppsala, Sweden

Project in Scientific Computing 2020