UPPSALA
UNIVERSITET

Real Time Forecasting of Bus
Arrivals Using GPS data

Simon Bethdavid, Simon Blomberg, Simon Hellman
Project in Computational Science: Report

January 2020

- INSTITUTIONEN FOR INFORMATIONSTEKNOLOGI

1 Introduction

Everyone has experienced a bus not arriving on time while waiting at the bus
stop. Sometimes it leaves early, sometimes it arrives late. This sparks frus-
tration, and for some people a willingness to pursue a project in bus arrival
forecasting. The problem of accuratlely predicting when a bus will arrive at a
bus stop or five stops ahead is a complex one. There are numerous variables de-
termining the outcome—such as weather, bus driver, distance, neighbourhood
population, traffic conditions—just to mention a few. In Uppsala County the
public transportation is provided by Upplands Lokaltrafik AB (UL). For bus ar-
rival forecasts UL currently uses a third-party tool built on top of a proprietary
algorithm.

During the Spring of 2019 there was a group of students at Uppsala univer-
sity that conducted their Bachelor’s thesis [1], Are we there yet?, for UL. They
implemented a neural network prediction model using the inputs: time travelled
since the start of journey, time of day, current bus stop and final bus stop. The
output was the time travelled between the specified stops. This approach man-
aged to outperform the current forecasting system used by UL [1]. Also during
2019 a master’s thesis was written together with Ostgétatraﬁken AB (OT) and
their third-party forecasting provider. A type of recurrent neural network called
long short-term memory (LSTM) was used. The results from this study were
even more promising [2]. Wei Fan and Zegeye Gurmu studied a similar traffic
related prediction problem and found that neural networks are well suited for
problems in this domain [3].

This project is done in collaboration with UL, with the intention of produc-
ing bus arrival forecasts that can compete with the previous works and the
currently implemented system. Compared to [1] we will use real time GPS data
in order to investigate whether more detailed data will give higher performance
for the arrival forecasts. In part, this data will be provided by a partner group
from the course Project in Embedded Systems. They will create a real time po-
sition tracker and a web platform. Their project, together with the forecasting
provided by this project will form a proof-of-concept product that intends to
show how everything could look to the end user.

2 Architecture

UL saves GPS data from their busses every second and this data has the po-
tential to be used for training a machine learning model to predict bus arrivals.
This project uses the GPS data from buses on line 5 in Uppsala going from Sten-
hagen to Sdvja. The goal is to train a machine learning model with this data
and have it serve requests for a standalone web server. The real time data used
for predictions is gathered from on-board GPS units assembled by our partner
group in the course Project in Embedded Systems. The data from these units
are uploaded to an SQL database on the prediction machine every second. The
partner group where also responsible for creating a website displaying the buses
together with the predictions from the prediction server (PS). Communication
between different parts of the architecture are all handled through HTTP web

requests making it very separable. The PS for instance can be run on a separate
machine or even in a cloud environment. The same is true of the SQL database
and the website. Figure 1 illustrates the relationships between the different
components.

GPS

\

(¢

- . ﬁ‘}

Figure 1: All parts of the system architecture except for the on-board unit are
separable and can be executed in a cloud environment (Raspberry Pi image
from [4]).

2.1 Prediction Model

This project focuses on optimising a feed forward Neural Network (NN) as pre-
vious work point towards a promising result when forecasting transportation
arrivals using NNs [3].

In Neural Networks for Pattern Recognition, Bishop [5] covers how NNs are im-
plemented. This project uses a feed forward NN with two hidden linear layers.
All layers except the last use ReLU activation functions. Batch normalisation
was introduced between the linear layers.

For reference, a linear regression model and random forest model were trained
with the same input parameters. In the remainder of the report these are re-
ferred to as baseline models.

3 Neural Network

NNs was originally invented to simulate the neurons of a brain, now they are
used in a wide variety of machine learning tasks to model non-linear relation-
ships.

NNs work by applying consecutive linear transformations and non-linear activa-
tion functions to an input vector. The linear transformations are implemented as

matrix multiplications, where each element of the matrix is a optimised param-
eter. A problem with the linear transformations is the fact that a composition
of them is also linear, hence such a network can only model linear relationships.
To remedy this we introduce non-linearities in the form of activation functions
between the linear layers. A common choice of activation function is the rectified
linear unit function (ReLU),

f(z) = max(0, z). (1)

B. Hanin and M. Sellke [6] show that a NN with ReLU activations can ap-
proximate any continous function with arbitrarily precision. It also has good
computational properties which makes it suitable for real time predictions (see,

e.g., [7]).

3.1 Loss Functions

A NN is parameterised by its weight matrices. These matrices are chosen to
minimise the so-called loss function. The loss function is problem specific and
is a function of the network prediction and the ground truth. Two typical loss
functions for regression problems is the mean absolute error (MAE) loss

p,t) = |(p— 1)l (2)
and the mean squared error (MSE) loss
l(p,t) = (p—1)%, 3)

where p is the predicted value and ¢ is the ground truth. T represents taking
the mean value of x.

This project evaluates four different loss functions,
1. MSE loss,
2. MAE loss,
3. Asymmetric MAE loss,
4. Truncated loss.

The latter two are both visualised in Figure 2. The asymmetric MAE loss is
defined as

I(t,p) = adH(d) — fdH (—d), (4)

where H(x) is the Heaviside function, d =t — p, @ and 8 are hyperparameters.
By varying the hyperparameters we can penalise errors of a certain sign more
than the other. This is relevant since early predictions are worse than late in the
buss arrival prediction domain. This loss has the effect of biasing the predictions
towards either later or earlier depending on « and 8. A result of this is that
it cannot be evaluated by its MAE since it will always be higher than for the
standard MAE loss, the resulting model trained with this loss function is instead
evaluated qualitatively. The truncated loss is defined as

I(t,p)=(—d+71)H(—d+7)+ (d—7)H(—d — 7). (5)

This loss function has a non-penalised region around zero. Outside of this region
the function behaves as a standard MAE. The rationale behind this is that a
bus arriving within 7 seconds is not a problem that needs to be optimised for.
The hope is that this makes the model focus on making the really off-target
predictions better, rather then optimising the already accurate predictions.

Asymmetric loss Truncated loss
200
601
150
— 401
12100
50 20
0 0
-100 0 100 -100 0 100
d sl d[s]

Figure 2: Visualisation of the two custom loss functions — asymmetric loss and
truncated loss.

3.2 Optimisation

The weights are updated by iteratively minimising the loss function using a
gradient method such as stochastic gradient descent (SGD). It is therefore im-
portant that the loss function is locally differentiable with respect to the weights.

This project uses the Adam optimisation algorithm to optimise the loss func-
tion. It is a first order optimisation algorithm extended from SGD. Adam was
chosen since it has proven to work well optimising stochastic problems of this
nature (see in, [8]).

3.3 Batch Normalisation

Due to their high model complexity, NNs are inherently prone to overfitting.
The standard solution to this is to introduce a regularisation method, called
dropout. Dropout works by randomly ignoring inputs into layers during train-
ing to prevent overfitting to specific inputs or samples. A drawback of this
method is that it slows down training due to ignoring some features of the in-
put data. Another regularisation option that instead improves training time is
batch normalisation. This works by normalising the inputs for each batch of
samples [9]. An additional effect of batch normalisation is that it makes the
loss function smoother, allowing the use of higher learning rates which in turn
speeds up the training.

4 Implementations

The main tools used to implement the prediction server are:

e Python 3.7.1

e NumPy 1.17.3
e Pandas 0.25.3

e PyTorch 1.2.0

e SciPy 1.3.1

e Flask 1.1.1

e ScikitLearn 0.22

4.1 Input Parameters

The model uses a number of auxiliary input parameters along with the GPS
data. They are used in order to capture other phenomena that influences how
long it will take for a bus to travel a specific distance.

Time since start of trip: All timestamps are calculated since the start of
the trip. Probably the most intuitive parameter since the entire project
revolves around forecasting arrival times.

Time of day: This parameter intends to capture the different traffic conditions
during different times of the day. If one could access the data on the
traffic conditions itself, that would be preferred. Having access to that
data would also enable one to deal with unlikely disturbances that occur
during otherwise calm hours of the day. Since we do not have access to
that kind of data we use time of day as a proxy for the traffic conditions.

Travel time of previous buses: Another possible proxy for local traffic con-
ditions is the travel time of previous buses on the same route. Compared
to other features this one is not in real time, which means that these fea-
tures will make the model less sensitive to the current state. We hope to
improve the overall performance of the model using this parameter. It is
also a way of making the model more stable and not too sensitive to the
current situation.

Precipitation: This feature consists of the amount rain or snowfall as a single
parameter measured in millimetres. It is a reasonable guess that heavy
rain or snowfall might affect the traffic conditions. Rain might increase
demand and snowfall can affect road passability.

This data is acquired using the Swedish Meteorological and Hydrologi-
cal Institutes’ (SMHI) API [10], specifically data from the weather station
“Uppsala Flygplats”.

Temperature: Like with rain and snowfall, temperature might have some im-
pact as well. One guess is that lower temperatures could increase demand.

The data is acquired in the same way as precipitation, using the SMHI
API [10].

4.2 GPS Data Preprocessing

Using raw longitude and latitude data as input features would presumably not
do much for the network, unlike humans it cannot correlate the two scalars to
a position in the real world. The GPS data needs to be transformed into a
representation relating to our problem. A promising metric would be the Eu-
clidean distance to the final stop, but since it is known that the bus keeps to its
line, a better representation is the distance along the line towards the bus stop
incorporating this new information.

The GPS training data obtained from UL contains a number of irrelevant
columns, hence data preprocessing is essential before feeding it to the NN.
Cleaning the data results in files containing the columns, timestamp, longi-
tude, latitude and buss index. As the forecasting of bus arrivals is fixed to line
5 in one direction, Stenhagen - Sévja, the next step is to filter out that specific
line. This is done by finding all trips that pass by both the start and end stops,
extracting the corresponding bus index and finally selecting all data points cor-
responding to that bus index. This project received 16 days (all within one
month) worth of GPS data and after cleaning it resulted in approximately 1000
line 5, Stenhagen - Sévja, trips.

The next step is to convert the GPS data into trip progress. This is done
by projecting the GPS coordinates onto a bus line acquired from an API pro-
vided by UL [11].

The algorithm to obtain the trip progress is divided into two parts, the first
part determines which segment the data point should be projected onto by
choosing the closest one, see Figure 3. In reality the segments are smaller and
there is only one segment to each data point. The second part is to calculate
how far on the segment the bus has travelled. The total travel length is then
calculated by summing the previous segment lengths and how far the bus has
travelled on the closest segment.

~~ .
Bus coordinates
A

Closest segment

Figure 3: Illustration of segmented bus line.

When calculating the distances to the segments there are three possible
cases: A, B and C as shown in Figure 4.

P P

1 2

o

~

~e
C

i
v :

Figure 4: Figure showing the different cases when calculating the distance on
the bus line.

For case A and C the distance is the Euclidean distance between A or C and
the corresponding endpoint of the segment. For case B, a projection onto the
line is calculated via a scalar product as illustrated in Figure 5. This gives both
the shortest distance to the line segment, and the relative distance travelled on
the segment as denoted by x in the Figure. The variable x is given by,

2 =Vpp- Ve, (6)

and the distance by Pythagorean’s theorem as

d:\/|‘7p13‘27:172. (7)

Here VQ r is the vector from point) to R, |‘7| denotes the length of V and
V=V/V|

b
@ o g
P, la P

B
Figure 5: Figure showing the distance needed to get the trip progress.

In Figure 6 two buses are visualises by their trip progress. One can clearly
see that the largest disturbance compared to a linear relationship occurs when
passing the central station where the buses seem to stand still for a longer period
of time.

100

80

60

40

Progress [%]

201

0 10 20 30 40 50 60
Time [min]

Figure 6: Figure showing the final GPS embedding, progress over time for two
buses.

4.3 Sample Generation

To simulate real time requests we generate the input samples to the NN by
randomly sampling a trip, choosing a target bus stop according to a triangular
distribution and choosing a random start position on the selected trip before
the retrieved bus stop. The reason for not sampling the bus stops from a uni-
form distribution is that it would yield a mean sample distance of about one
forth of the total line length. Since we want our model to focus on longer, more
difficult predictions, we need the mean distance to be longer and therefore use
a triangular distribution which yields a mean distance of one third.

The generated GPS data is then combined with the auxiliary data such as
weather, fetched from the SMHI API [10], and time to form the final sample.

Since the model is meant to predict arrival time using real time data collected
from GPS units located on the buses, there is a need to quickly create real time
samples. Overall this process is very similar to the sample generation process
described above. However the travel time of previous buses are not as straight
forward to generate, since we need to make sure to collect the underlying data
continuously. We solve this by a data collection script that stores historic data
in the SQL database. The samples are then generated by combining this data
with the real time GPS position obtained from the on-board unit, the arrival
location and the auxiliary data.

5 Prediction Results and Discussion

The data is split into three datasets:

e Train — Used only for training the network and optimising the network
weights. (72.5 %)

e Validation — Used for evaluating the performance of the network and
tuning hyperparameters. (12.5 %)

e Test — Only used for evaluating the final model. (15 %)

The overall model performance compared to the baseline models are presented
in Table 1. The NN performs slightly better than both the random forest
and linear regression models using the same input features. It is interesting to
note that the linear regression model outperforms previous NN results obtained
without using GPS data in terms of mean absolute error (72.4 s) (see [1]).

Table 1: Performance of the neural network compared to the baseline models.
When evaluating the accuracy a correct prediction is defined to be within 60 s
of the actual arrival time.

Neural Network Random Forest Linear Regression

MAE [s] 63.2 69.1 70.4
Accuracy [%] 59.8 53.7 54.9

Figure 7 presents the absolute error compared to the length of the predicted
trip. It points towards a fairly linear relationship between the error and trip
length. For longer trips the model is more likely to miss-predict than for shorter
ones.

150{ —— Median ,
—————— 1st and 3rd quantile

751

(S
o

N
(]

Absolute Prediction Error [s]

Trip Length [%]

Figure 7: Absolute Error for trips of different lengths show a approximately
linear relationship.

Using that a correct prediction is within 60 seconds of the actual arrival
time, Figure 8 shows how the accuracy measure changes with different trip
lengths. As the Figure illustrates the accuracy decreases for longer trips in a
somewhat linear manor and as expected it is easier to correctly predict shorter
trips compared to longer.

Accuracy [%]
[e)] (o)
< Q

B
o

N
o

0 20 40 60 80
Trip Length [%]

Figure 8: Accuracy measure for trips of different lengths.

In Figure 9 the result of models trained with two loss functions, MAE loss
and asymmetric loss are presented. It shows that the asymmetric loss behaves
as desired and skews the model towards predicting earlier.

The results when using a model with truncated loss yielded the same results as
when using MAE loss, hence was not further investigated.

15.0

N Asymmetric loss
12.5 [MAE loss

,_.
o
o

Frequency [%]
~J
wu

—-300 —-200 -100 0 100 200 300 400 500
Difference from actual arrival [s]

Figure 9: The distribution of prediction difference for two different loss func-
tions.

10

In Table 2 the result for different hyperparameters in the model are shown.
Different network sizes and batch sizes where investigated. The highest accuracy
was yielded from a hidden layer size of 100 and a batch size of 250.

Table 2: Neural network accuracy when varying batch size (BS) and hidden
layer size (HLS).

BS
HLS 100 250 500
25 55.6 59.0 57.6
50 56.2 584 58.6
100 58.2 59.9 59.8
200 57.4 58.9 59.0

Table 3 presents a comparison of the different symmetric loss functions as
well as the effect of batch normalisation on the MAE loss. The MAE with
batch normalisation outperforms both alternatives on the validation data. One
interesting thing to note is that batch normalisation improved the performance
both on the validation and training data sets. This goes against the notion that
it would act as regularisation since that would degrade the training performance.
One explanation of this is that the smoothing effect of the batch normalisation
increases the training performance more than the regularisation degrades it,
leading to a net increase in training accuracy.

Table 3: Comparison of different symetric losses as well as the effect of batch
normalisation. Values from train and validation data. Results from validation

data are presented in parenthesis.
Accuracy [%] MAE [g]

MSE with bn 64.6 (59.8) 57.1 (67.4)
MAE without bn 69.9 (58.3) 54.2 (68.4)
MAE with bn 72.8 (60.9) 47.5 (65.4)

5.1 Discussion of Computational Cost

In general the training of a neural network is relatively computationally heavy
compared to other machine learning techniques. The actual execution of a
network prediction however only consists of a few matrix multiplications and
therefore can be done even on modern mobile devices or directly in web browsers.
This opens the opportunity to do the actual model executions on the edge
devices, leading to reduced server costs for UL. As it currently stands the great
computational burden is preprocessing, both of the training data and real time
execution of the model. However not much time has been spent on optimising
this and since different predictions are independent in terms of input data,
the task is very parallelisable. One could even imagine doing the real time
preprocessing on the edge devices.

11

6 Conclusions

We have implemented a neural network model to predict bus arrivals from GPS
data. Most of the project time was spent on preprocessing the GPS data col-
lected from Upplands Lokaltrafik. We successfully used batch normalisation to
improve the model both in terms of training time and final accuracy. Two cus-
tom loss functions, truncated loss and asymmetric loss where evaluated. The
truncated loss did not increase performance while the asymmetric loss skewed
the model towards earlier predictions as expected.

The model performed slightly better in terms of arrival accuracy than the base-
line random forest model and previous neural network models which did not use
GPS data (see, [1]). We conclude that real time position data is relevant when
predicting bus arrival times. The implemented framework is computationally
feasible even for significantly larger systems of bus lines.

6.1 Future Work

To further increase the performance of the model the first step would be to train
with much more data. This would likely enable the model to better characterise
outliers in the dataset and hopefully increase the relevance of seasonal features
like weather. It would also be interesting to further investigate the use of a
recurrent neural network. To better capture the traffic situation and thereby
increase the accuracy one could imagine using data like city event information.
Extending the project to deal with more then one line would open the oppor-
tunity to exchange traffic information between routes that drive on the same
physical streets. Another interesting point is to investigate the generality of
this kind of models. Are they equally applicable on regional buses over larger
distances?

12

References

[1]

[11]

Johan Rideg, Max Markensten, 2019, ’Are we there yet?: Prediciting bus
arrival times with an artificial neural network’, (Unpublished Bachelor The-
sis), Uppsala Universitet, Uppsala, Sweden.

Christoffer Fors Johansson, 2019, ’Arrival Time Predictions for Buses us-
ing Recurrent Neural Networks’, (Unpublished Master Thesis), Linkoping
University, Linkoping, Sweden.

Wei Fan, Zegeye Gurmu, 2015, 'Dynamic Travel Time Prediction Models

for Buses Using Only GPS Data’, International Journal of Transportation
Science and Technology, vol. 4, issue 4, pp. 353-366.

Raspberry Pi [Image on internet], edited. Available from:
https://bit.1ly/2vbEotG. Retrived 2020-02-06.

Christopher M. Bishop, 1995, ”"Neural Network for Pattern Recognition”,
Aston University, Burmingham, UK.

Boris Hanin, Mark Sellke, 2018, 7"APPROXIMATING CONTIN-
UOUS FUNCTIONS BY RELU NETS OF MINIMAL WIDTH”,
arXiw:1710.11278.

SXavier Glorot, Antoine Bordes and Yoshua Bengi, 2011, ”Deep sparse
rectifier neural networks”, AISTATS.

Diederik P. Kingma, Jimmy Ba, 2014, ”Adam: A Method for Stochastic
Optimization” arXiv:1412.6980.

Sergey loffe, Christian Szegedy, 2015, Batch Normalization: ” Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift”,
arXiv:1502.03167, Google Inc.

Swedish Meterological and Hydrological Institute weather APIL.
https://opendata.smhi.se/apidocs/metobs/index.html. Retrieved December
2019.

UL Bus route API, https://api.ul.se/api/v3. Retrieved December 2019.

13

