Using Concurrency For A Community Detection Algorithm

Objectives

Since networks contains a lot of dimensions as
well as edges (connections between nodes), the
performance of algorithms that act on these net-
works is pretty bad, specially the computational
time. A community detection algorithm 'Gener-
alized Louvain' is one of these algorithms that
perform badly with respect to dimensions and
number of edges. The objective of this project
will be to use concurrency in order to increase
the performance gain of the community detection
algorithm (Generalized Louvain).

Introduction

The data today is far greater than the data avail-
able in previous years, due to the growth of social
media and the internet. Hence it has become more
interesting to use the data by analyzing and min-
ing it to extract useful information. Some of these
data sets can be visualized as a Multilayer Net-
work. These networks usually contains 'communi-
ties', where a group of nodes are more connected
to each other than the rest of the network. Detect-
ing these communities is an important task in social
network analysis, allowing us to identify and under-
stand the communities within the social structures.
There are several algorithm that are used in order
to do this, and one of these algorithms is the "Gen-
eralized Louvain Algorithm'. Since this algorithm
is very time consuming, the objective has been to
increase performance using concurrency.

Figure 1:3D Multilayer Network [3]

Raghid Abdeljawad and Sina Mohammadi

Department Of Information Technology Uppsala University

Main work

The three main parts in this project are the Net-
work generation, Algorithm Testing and
Optimizing with concurrency (see Methods).
The networks/benchmarks has been generated us-
ing MATLAB, a prepared framework provided has
been been used to generate data sets [1|. The al-
corithm itself is written in C+-+ programming lan-
cuage. Finally the concurrency is implemented in
C+4. OpenMP is the interface that has been used
to parallelize the algorithm.

e Network Generation - MATLAB
e Algorithm Testing — C+4++4
e Concurrency — OpenMP

Methods

Benchmarks are needed to test the Generalized Lou-
vain algorithm. These Benchmarks has been gener-
ated with a framework in MATLAB. As mentioned
before, the networks could be of different sizes and
different densities, hence one need to specify the
parameters that characterise the network. Many
benchmarks with different characteristics has been
cenerated in order to find the bottlenecks of the al-
corithm. The next step was to test the algorithm
on these benchmarks. By doing these tests, one
could figure out the performance of the algorithm
and therefore try to parallelize the part of the code
that are most time consuming.

Important Result

» The computational time is most sensitive to the number of edges in the network (Density of the

network).

e Computing the modularity is the most time consuming part of the code.

Results

As mentioned before, the algorithm is most sensitive
to the number of edges the network has. When the
networks have been generated, two of the parame-
ters controls the "Powerlaw distribution’, which in
turn controls the number of edges. These parame-
ters has been changed in order to get benchmarks
with different edge densities.

%108

%108

| | |
0 2 ! 6 8 10 12 14 16 18
The number of edges x10%

Figure 2:The performance of Glouavin

Results

| | |
0 2 4 6 8 10 12 14 16 18
The number of edges «104

Figure 3:The speedup using openmp

Using openmp gives a pretty good speedup accord-
ing to figure 3. From the standard division we see
that the speedup vary a little bit and this is caused
by the varying amount of work of the parts that has
been parallelized.

\
AVERITAS K

UPPSALA
UNIVERSITET

Conclusion

After the algorithm had been parallelized we got a
small amount of performance increment. Since the
testing and characterization of the bottlenecks has
taken more time than anticipated, there are some
areas to consider going forward with this algorithm.
When working with data mining the amount of data
is usually quite large. Since the algorithm consumes
a lot of memory in order to analyze the small data
sets that we have been testing, one should look into
how to reduce memory complexity of the algorithm.

Additional Information

e The MATLAB code for the generation of the
networks, see reference |1

e The Generalized Louvain algorithm is a part of
the CRAN package Multinet, but written in

CH++.

References

1] Lucas G. S. Jeub Marya Bazzi.
A framework for the construction of generative models

for mesoscale structure in multilayer networks.
2019.

2] Kevin Macon Mason A. Porter Peter J. Muchal,
Thomas Richardson and Jukka-Pekka Onnela.
Community Structure in Time-Dependent, Multiscale,
and Multiplex Networks.

2010.

3] Nikos E. Kouvaris.
http:/ /nikos.techprolet.com/.
2013.

Acknowledgements

e Email: Raghid.Namir@gmail.com

sina.sa.mohammadi@gmail.com

mailto:john@smith.com
mailto:john@smith.com

