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An option pricing problem can be described either in terms of one or more
stochastic diffusion processes for the underlying assets, and potentially addi-
tional processes for the volatility of the assets and or the interest rate, or as a
PDE or PIDE (partial integro-differential equation) for the option price. The
corresponding numerical methods are in the first case Monte Carlo methods
and in the second any numerical PDE solver. What determines the optimal
choice is mainly the number of underlying assets or processes, which in the
PDE case corresponds to the number of dimensions. Monte Carlo methods are
the most efficient for high-dimensional problems, while standard PDE methods
are competitive for lower dimensions up to around five dimensions. There are
also specialized deterministic methods such as sparse grid approximation [3, 4]
that can be of interest up to ten dimensions or more.

The most common choice of deterministic method is the finite difference
method (FDM). The main reason is that the computational domain in the asset-
space often is taken as a square or rectangle, which makes it easy to create a
grid. The most competitive FDM also include adaptivity [8, 7], but then the grid
structure is a limitation, since the adaptive refinement affects a whole dimension
rather than a localized region. An alternative is to use stencil approximations
on scattered nodes, see [6]. However, this is a relatively new research area so
far.

Another relevant choice of method for local adaptivity is the finite element
method. There are articles that explore this direction, but it has not gained
dominance. Some examples are [10], where a blockwise refined regular mesh
is used, [1], where an open source FEM solver with mesh adaptivity is used,
and [2], which uses a more advanced form of adaptivity including duality-based
a posteriori estimates. Similar estimates were also used in a finite difference
context in [5]

Project plan

The first part of the project consists of implementing a goal-oriented adaptive
FEM for a benchmark European spread call option problem in two asset dimen-
sions from [9]. The problem is given by

1



0

4

1

(s
1
,s

2
)

2

s
2

2 4

3

s
1

2
0 0

Figure 1: The payoff for the European call spread option.
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(1)
The model parameters to use are r = 0.03, σ1 = σ2 = 0.15, ρ = 0.5, K = 0, and
T = 1. The payoff function for the European call spread option is φ(s1, s2) =
max(s1 − s2 −K, 0).

Which boundary conditions to use in the FEM setting can be discussed
and/or investigated.

Reference solution values to validate the implementation against can be
found at the BENCHOP web page http://www.it.uu.se/research/scientific_
computing/project/compfin/benchop/original. There are also other imple-
mentations of solvers in MATLAB that can be used for a comparison of effi-
ciency.

The payoff function is illustrated in Figure 1. As the discontinuity in the first
derivative goes diagonally across the rectangle with corners (1, 0) and (4, 3), a
finite difference method needs to refine almost the whole domain to adaptively
resolve the problem.

Assuming that there is time to go further, other types of options with chal-
lengeing payoff structures can be considered as well as non-linear modifications
of the option pricing problem. Examples of relevant non-linearities are American
boundary conditions and transaction costs.
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