SCHEDULING PERIODIC TASKS
Periodic task model

- A task = \((C, T)\)
 - \(C\): worst case execution time/computing time (\(C\leq T\!\!\))
 - \(T\): period (\(D=T\))

- A task set: \((C_i, T_i)\)
 - All tasks are independent
 - The periods of tasks start at 0 simultaneously
CPU utilization

- **C/T** is the CPU utilization of a task
- **U=Σ Ci/Ti** is the CPU utilization of a task set
- Note that the CPU utilization is a measure on how busy the processor could be during the **shortest repeating cycle**: T1*T2*...*Tn
 - **U>1** (overload): some task will fail to meet its deadline no matter what algorithms you use!
 - **U<=1**: it will depend on the scheduling algorithms
 - If U=1 and the CPU is kept busy (non idle algorithms e.g. EDF), all deadlines will be met
Scheduling Algorithms

- Static Cyclic Scheduling (SCS)
- Earliest Deadline First (EDF)
- Rate Monotonic Scheduling (RMS)
- Deadline Monotonic Scheduling (DMS)
Static cyclic scheduling

- Shortest repeating cycle = least common multiple (LCM)
- Within the cycle, it is possible to construct a static schedule i.e. a time table
- Schedule task instances according to the time table within each cycle
- Synchronous programming languages: Esterel, Lustre, Signal
Example: the Car Controller

Activities of a car control system. Let

1. \(C \) = worst case execution time
2. \(T \) = (sampling) period
3. \(D \) = deadline

- Speed measurement: \(C = 4 \text{ms}, T = 20 \text{ms}, D = 20 \text{ms} \)
- ABS control: \(C = 10 \text{ms}, T = 40 \text{ms}, D = 40 \text{ms} \)
- Fuel injection: \(C = 40 \text{ms}, T = 80 \text{ms}, D = 80 \text{ms} \)
- Other software with soft deadlines e.g audio, air condition etc
The car controller: static cyclic scheduling

- The shortest repeating cycle = 80ms
- All task instances within the cycle:

![Diagram with task instances at 0, 20, 40, 60, and 80, labeled as Speed, ABS, and Fuel.]

- Try any method to schedule the tasks
The car controller:

time table constructed with EDF

A feasible Schedule!

Soft RT tasks

speed

ABS

FUEL-1

FUEL-2

Fuel-3

FUEL-4

speed

speed

80

4

14

20

24

64

76

60

54

44

40

60
Static cyclic scheduling: + and –

- Deterministic: predictable (+)
- Easy to implement (+)
- Inflexible (-)
 - Difficult to modify, e.g. adding another task
 - Difficult to handle external events
- The table can be huge (-)
 - Huge memory-usage
 - Difficult to construct the time table
Example: shortest repeating cycle

- OBS: The LCM determines the size of the time table
 - LCM = 50ms for tasks with periods: 5ms, 10ms and 25ms
 - LCM = 7*13*23 = 2093 ms for tasks with periods: 7ms, 13ms and 23ms (very much bigger)

- So if possible, manipulate the periods so that they are multiples of each other
 - Easier to find a feasible schedule and
 - Reduce the size of the static schedule, thus less memory usage
Earliest Deadline First (EDF)

- **Task model**
 - a set of independent periodic tasks

- **EDF:**
 - Whenever a new task arrives, sort the ready queue so that the task closest to the end of its period is assigned the highest priority.
 - Preempt the running task if it is not placed in the first of the queue in the last sorting.

- **FACT 1:** EDF is optimal
 - EDF can schedule the task set if any one else can

- **FACT 2** (Schedulability test):
 - $\Sigma Ci/Ti \leq 1$ iff the task set is schedulable.
Example

- Task set: \{(2,5),(4,7)\}
- \(U = \frac{2}{5} + \frac{4}{7} = \frac{34}{35} \approx 0.97\) (schedulable!)
EDF: + and –

- Note that this is just the simple EDF algorithm; it works for all types of tasks: periodic or non periodic
 - It is simple and works nicely in theory (+)
 - Simple schedulability test: \(U \leq 1 \) (+)
 - Optimal (+)
 - Best CPU utilization (+)

- Difficult to implement in practice. It is not very often adopted due to the dynamic priority-assignment (expensive to sort the ready queue on-line), which has nothing to do with the periods of tasks. Note that Any task could get the highest priority (-)

- Non stable: if any task instance fails to meet its deadline, the system is not predictable, any instance of any task may fail (-)

We use periods to assign static priorities: RMS ➔
Two classic papers on real-time systems

 - Priority inversion and ceiling protocols

 - Rate monotonic scheduling
Rate Monotonic Scheduling: task model

Assume a set of periodic tasks: \((C_i, T_i)\)

- \(D_i = T_i\)
- Tasks are always released at the start of their periods
- Tasks are independent
RMS: fixed/static-priority scheduling

- Rate Monotonic Fixed-Priority Assignment:
 - Tasks with smaller periods get higher priorities
- Run-Time Scheduling:
 - Preemptive highest priority first

FACT: RMS is optimal in the sense:
- If a task set is schedulable with any fixed-priority scheduling algorithm, it is also schedulable with RMS
Example

\{(20,100), (40,150), (100,350)\}

Pr(T1)=1, Pr(T2)=2, Pr(T3)=3
Example

- Task set: $T_1=(2,5), T_2=(4,7)$
- $U = \frac{2}{5} + \frac{4}{7} = \frac{34}{35} \approx 0.97$ (schedulable?)
- RMS priority assignment: $Pr(T_1)=1, Pr(T_2)=2$

Missing the deadline!
RMS: schedulability test

- **U<1** doesn’t imply ‘schedulable’ with RMS
 - OBS: the previous example is schedulable by EDF, not RMS

- **Idea**: utilization bound
 - Given a task set S, find $X(S)$ such that $U \leq X(S)$ if and only if S is schedulable by RMS (necessary and sufficient test)
 - Note that the bound $X(S)$ for EDF is 1
The famous **Utilization Bound test (UB test)** [by Liu and Layland, 1973: a classic result]

- Assume a set of n independent tasks:
 - $S = \{(C_1, T_1)(C_2, T_2)...(C_n, T_n)\}$ and $U = \sum C_i / T_i$

- **FACT**: if $U \leq n \times (2^{1/n} - 1)$, then S is schedulable by RMS

- Note that the bound depends only on the size of the task set
Example: Utilization bounds

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(1)=1.0$</td>
<td>$B(4)=0.756$</td>
<td>$B(7)=0.728$</td>
</tr>
<tr>
<td>$B(2)=0.828$</td>
<td>$B(5)=0.743$</td>
<td>$B(8)=0.724$</td>
</tr>
<tr>
<td>$B(3)=0.779$</td>
<td>$B(6)=0.734$</td>
<td>$U(\infty)=0.693$</td>
</tr>
</tbody>
</table>

Note that $U(\infty)=0.693$!
Example: applying UB Test

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T (D=T)</th>
<th>C/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>20</td>
<td>100</td>
<td>0.200</td>
</tr>
<tr>
<td>Task 2</td>
<td>40</td>
<td>150</td>
<td>0.267</td>
</tr>
<tr>
<td>Task 3</td>
<td>100</td>
<td>350</td>
<td>0.286</td>
</tr>
</tbody>
</table>

Total utilization: \(U = 0.2 + 0.267 + 0.286 = 0.753 < B(3) = 0.779 \)
The task set is schedulable
Example: RM Scheduling

\{(20,100),(40,150),(100,350)\}
UB test is only **sufficient, not necessary**!

- Let $U = \Sigma Ci/Ti$ and $B(n) = n*(2^{1/n}-1)$
- Three possible outcomes:
 - $0 \leq U \leq B(n)$: schedulable
 - $B(n) < U \leq 1$: no conclusion
 - $1 < U$: overload

- Thus, the test may be too conservative
- (exact test will be given later)
Example: UB test is sufficient, not necessary

- Assume a task set: \(\{(1,3),(1,5),(1,6),(2,10)\} \)
- CPU utilization \(U = \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{2}{10} = 0.899 \)
- The utilization bound \(B(4) = 0.756 \), OBS: \(U > B(4) \)
- But the task set is schedulable anyway!
How to deal with tasks with the same period

- What should we do if tasks have the same period?
- Should we assign the same priority to the tasks?
- How about the UB test? Is it still sufficient?
- What happens at run time?
RMS: Summary

- Task model:
 - periodic, independent, D=T, and a task = (C_i, T_i)
- Fixed-priority assignment:
 - smaller periods = higher priorities
- Run time scheduling: Preemptive HPF
- Sufficient schedulability test: \(U \leq n \times (2^{1/n} - 1) \)
- Precise/exact schedulability test exists
RMS: + and –

- Simple to understand (and remember!) (+)
- Easy to implement (static/fixed priority assignment) (+)
- Stable: though some of the lower priority tasks fail to meet deadlines, others may meet deadlines (+)

- "lower" CPU utilization (-)
- Requires D=T (-)
- Only deal with independent tasks (-)
- Non-precise schedulability analysis (-)
- But these are not really disadvantages; they can be fixed (++++)
 - We can solve all these problems except "lower" utilization
Critical instant: an important observation

- Critical instant of a task is the time point at which the release of the task will yield the largest response time. It occurs when the task is released simultaneously with higher priority tasks.

- Note that the start of a task period is not necessarily at zero, or at the same time as the other tasks.
Sufficient and necessary schedulability analysis

Simple ideas [Mathai Joseph and Paritosh Pandya, 1986]:
- **Critical instant**: the worst case response time for all tasks is given when all tasks are released at the same time.
- Calculate the worst case response time R for each task with deadline D. If $R \leq D$, the task is schedulable/feasible. Repeat the same check for all tasks.
- If all tasks pass the test, the task set is schedulable.
- If some tasks pass the test, they will meet their deadlines even the other don’t (stable and predictable).

Question:
- how to calculate the worst case response times?
 - We did this before!
Worst case response time calculation: example

\{(1,3),(1,5),(1,6),(2,10)\}

Response times?
Worst case? First period?
Why?
Worst case response time calculation: example

\{(1,3),(1,5),(1,6),(2,10)\}

Response times?
Worst case? First period? Why?

You don’t have to
Check this area!

What to do if too many?

WCR=1
WCR=2
WCR=3
WCR=9
 Calculation of worst case response times
[Mathai Joseph and Paritosh Pandya, 1986]

- Let R_i stand for the response time for task i. Then
 $R_i = C_i + \sum_j I(i,j)$
 - C_i is the computing time
 - $I(i,j)$ is the so-called interference of task j to i
 - $I(i,j) = 0$ if task i has higher priority than j

- $I(i,j) = \left\lceil \frac{R_i}{T_j} \right\rceil \times C_j$ if task i has lower priority than j
 - $\left\lceil x \right\rceil$ denotes the least integer larger than x
 - E.g. $\left\lceil 3.2 \right\rceil = 4, \left\lceil 3 \right\rceil = 3, \left\lceil 1.9 \right\rceil = 2$

- $R_i = C_i + \sum_{j \in HP(i)} \left\lceil \frac{R_i}{T_j} \right\rceil \times C_j$
Intuition on the equation

\[R_i = C_i + \sum_{j \in \text{HP}(i)} \left\lfloor \frac{R_i}{T_j} \right\rfloor \times C_j \]

- \(\left\lfloor \frac{R_i}{T_j} \right\rfloor \) is the number of instances of task \(j \) during \(R_j \)
- \(\left\lfloor \frac{R_i}{T_j} \right\rfloor \times C_j \) is the time needed to execute all instances of task \(j \) released within \(R_j \)
- \(\sum_{j \in \text{HP}(i)} \left\lfloor \frac{R_i}{T_j} \right\rfloor \times C_j \) is the time needed to execute instances of tasks with higher priorities than task \(i \), released during \(R_j \)
- \(R_j \) is the sum of the time required for executing task instances with higher priorities than task \(j \) and its own computing time
Equation solving and schedulability analysis

We need to solve the equation:

\[R_i = C_i + \sum_{j \in HP(i)} \left\lfloor \frac{R_i}{T_j} \right\rfloor C_j \]

This can be done by numerical methods to compute the fixed point of the equation e.g. By iteration: let

- \(R_i^0 = C_i + \sum_{j \in HP(i)} C_j = C_1 + C_2 + \ldots + C_i \) (the first guess)
- \(R_i^{k+1} = C_i + \sum_{j \in HP(i)} \left\lfloor \frac{R_i^k}{T_j} \right\rfloor C_j \) (the \((k+1)\)th guess)

The iteration stops when either

- \(R_i^{m+1} > T_i \) or \(\rightarrow \) non schedulable
- \(R_i^m < T_i \) and \(R_i^{m+1} = R_i^m \) \(\rightarrow \) schedulable

This is the so called Precise test
Example

- Assume a task set: \(\{(1,3),(1,5),(1,6),(2,10)\}\)
- **Question:** is the task set schedulable? YES!
 - \(R1^1 = R1^0 = C1=1\) (done)
 - \(R2^0 = C2 + C1=2,\)
 - \(R2^1 = C2 + \left\lfloor \frac{R2^0}{T1} \right\rfloor \times C1=1+ \left\lfloor \frac{2}{3} \right\rfloor \times 1=2\) (done)
Combine UB and Precise tests

- Order tasks according to their priorities (periods)
- Use UB test as far as you can until you find the first non-schedulable task
- Calculate response time for the task and all the tasks with lower priority
Example (combine UB test and precise test)

- Consider the same task set: \{(1,3),(1,5),(1,6),(3,10)\}
- CPU utilization \(U = \frac{1}{3}+\frac{1}{5}+\frac{1}{6}+\frac{3}{10} = 0.899 > B(4) = 0.756\)
 - Fail the UB test!
- But \(U(3) = \frac{1}{3}+\frac{1}{5}+\frac{1}{6} = 0.699 < B(3) = 0.779\)
 - This means that the first 3 tasks are schedulable
- Question: is task 4 set schedulable?
 - \(R4^0 = C_1+C_2+C_3+C_4 = 6\)
 - \(R4^1 = C_4+\left\lceil \frac{R4^0}{T_1} \right\rceil *C_1+\left\lceil \frac{R4^0}{T_2} \right\rceil *C_2+\left\lceil \frac{R4^0}{T_3} \right\rceil *C_3\)
 \[= 3 + \left\lceil \frac{6}{3} \right\rceil *1+\left\lceil \frac{6}{5} \right\rceil *1+\left\lceil \frac{6}{6} \right\rceil *1 = 8\]
 - \(R4^2 = C_4+\left\lceil \frac{R4^1}{T_1} \right\rceil *C_1+\left\lceil \frac{R4^1}{T_2} \right\rceil *C_2+\left\lceil \frac{R4^1}{T_3} \right\rceil *C_3\)
 \[= 3 + \left\lceil \frac{8}{3} \right\rceil *1+\left\lceil \frac{8}{5} \right\rceil *1+\left\lceil \frac{8}{6} \right\rceil *1\]
 \[= 3 + 3 + 2 + 2 = 10\]
 - \(R4^3 = C_4+\left\lceil \frac{R4^2}{T_1} \right\rceil *C_1+\left\lceil \frac{R4^2}{T_2} \right\rceil *C_2+\left\lceil \frac{R4^2}{T_3} \right\rceil *C_3\)
 \[= 3 + 4 + 2 + 2 = 11 \text{ (task 4 is non schedulable!)}\]
Example

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T</th>
<th>C/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>40</td>
<td>100</td>
<td>0.400</td>
</tr>
<tr>
<td>Task 2</td>
<td>40</td>
<td>150</td>
<td>0.267</td>
</tr>
<tr>
<td>Task 3</td>
<td>100</td>
<td>350</td>
<td>0.286</td>
</tr>
</tbody>
</table>

Total utilization: \(U = 0.4 + 0.267 + 0.286 = 0.953 > B(3) = 0.779! \)
UB test is inclusive: we need Precise test but we do have \(U(T1) + U(T2) = 0.4 + 0.267 = 0.667 < U(2) = 0.828 \) so we need to calculate R3 only!
Calculate response time for task 3

- \(R^0_3 = C_1 + C_2 + C_3 = 180 \)
- \(R^1_3 = C_3 + \left[\frac{R^0_3}{T_1} \right] C_1 + \left[\frac{R^0_3}{T_2} \right] C_2 \)
 \[= 100 + \left[\frac{180}{100} \right] * 40 + \left[\frac{180}{150} \right] * 40 \]
 \[= 100 + 2*40 + 2*40 = 260 \]
- \(R^2_3 = C_3 + \left[\frac{R^1_3}{T_1} \right] C_1 + \left[\frac{R^1_3}{T_2} \right] C_2 \)
 \[= 100 + \left[\frac{260}{100} \right] * 40 + \left[\frac{260}{150} \right] * 40 = 300 \)
- \(R^3_3 = C_3 + \left[\frac{R^2_3}{T_1} \right] C_1 + \left[\frac{R^2_3}{T_2} \right] C_2 \)
 \[= 100 + \left[\frac{300}{100} \right] * 40 + \left[\frac{300}{150} \right] * 40 = 300 \) (done)

Task 3 is schedulable and so are the others!
Question: other priority-assignments

- Could we calculate the response times by the same equation for different priority assignment?
Precedence constraints

How to handle precedence constraints?

- We can always try the ‘old’ method: static cyclic scheduling!

- Alternatively, take the precedence constraints (DAG) into account in priority assignment: the priority-ordering must satisfy the precedence constraints
 - Precise schedulability test is valid: use the same method as before to calculate the response times.
Summary: Three ways to check schedulability

1. UB test (simple but conservative)
2. Response time calculation (precise test)
3. Construct a schedule for the first periods
 - assume the first instances arrive at time 0 (critical instant)
 - draw the schedule for the first periods
 - if all tasks are finished before the end of the first periods, schedulable, otherwise NO
Extensions to the basic RMS

- Deadline <= Period
- Interrupt handling
- Non zero OH for context switch
- Non preemptive sections
- Resource Sharing
RMS for tasks with $D \leq T$

- RMS is no longer optimal (example?)
- Utilization bound test must be modified
- Response time test is still applicable
 - Assuming that fixed-priority assignment is adopted
 - But considering the critical instant and checking the first deadlines principle are still applicable
Deadline Monotonic Scheduling (DMS)
[Leung et al, 1982]

- **Task model**: the same as for RMS but $Di \leq Ti$
- **Priority-Assignment**: tasks with shorter deadline are assigned higher priorities
- **Run-time scheduling**: preemptive HPF

FACTS:
- DMS is optimal
- RMS is a special case of DMS
- DMS is often referred as Rate Monotonic Scheduling for historical reasons and they are so similar
Example

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Task 2</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Task 3</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Task 4</td>
<td>1</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

R1 = 1
R2 = 4
R3 = 3
R4 = 10

\[\text{Smiley face} \]
DMS: Schedulability analysis

- UB test (sufficient):
 \[\sum \frac{C_i}{D_i} \leq n \cdot (2^{1/n} - 1) \] implies schedulable by DMS

- Precise test (exactly the same as for RMS):

 Response time calculation:
 \[R_i = C_i + \sum_{j \in HP(i)} \left[\frac{R_i}{T_j} \right] \cdot C_j \]
 - \[R_i^0 = C_i + \sum_{j \in HP(i)} C_j = C_1 + C_2 + \ldots + C_i \] → the first guess
 - \[R_i^{k+1} = C_i + \sum_{j \in HP(i)} \left[\frac{R_i^k}{T_j} \right] \cdot C_j \] → the (k+1)th guess
 - The iteration stops when either
 - \[R_i^{m+1} > D_i \] or \[\text{non schedulable} \]
 - \[R_i^m < D_i \] and \[R_i^{m+1} = R_i^m \] → schedulable
Summary: 3 ways for DMS schedulability check

- UB test (sufficient, inconclusive)
- Response time calculation
- Draw the schedule for the first periods
EDF for tasks with $D \leq T$

- You can always use EDF and it is always optimal to schedule tasks with deadlines
 - We have a precise UB test for EDF for tasks with $D_i = T_i$: $U \leq 1$ iff task set is schedulable
 - Unfortunately, for tasks with $D_i \leq T_i$, schedulability analysis is more complicated (out of scope of the course, further reading [Giorgio Buttazzo’s book])
 - We can always check the whole LCM

Further question: what to do for tasks with arbitrary deadlines, e.g. $D > T$?
Summary: schedulability analysis

<table>
<thead>
<tr>
<th>Priority Type</th>
<th>Sufficient Test Condition</th>
<th>Precise Test Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static/Fixed-priority</td>
<td>RMS</td>
<td>$\sum \frac{C_i}{T_i} \leq n \times \left(2^{\frac{1}{n}} - 1\right)$</td>
</tr>
<tr>
<td></td>
<td>Precise Test</td>
<td>$R_i = C_i + \sum_{j \in HP(i)} \left[\frac{R_i}{T_j}\right] C_j$</td>
</tr>
<tr>
<td></td>
<td>Sufficient Test</td>
<td>$\sum \frac{C_i}{D_i} \leq n \times \left(2^{\frac{1}{n}} - 1\right)$</td>
</tr>
<tr>
<td></td>
<td>Precise Test</td>
<td>$R_i = C_i + \sum_{j \in HP(i)} \left[\frac{R_i}{T_j}\right] C_j$</td>
</tr>
<tr>
<td>Dynamic priority</td>
<td>EDF</td>
<td>$\sum \frac{C_i}{T_i} \leq 1$</td>
</tr>
<tr>
<td></td>
<td>Precise Test</td>
<td>$R_i = C_i + \sum_{j \in HP(i)} \left[\frac{R_i}{T_j}\right] C_j$</td>
</tr>
<tr>
<td></td>
<td>EDF</td>
<td>?</td>
</tr>
</tbody>
</table>
Summary: schedulability analysis

<table>
<thead>
<tr>
<th></th>
<th>Di=Ti</th>
<th>Di<=Ti</th>
<th>Di >= Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static/Fixed-priority</td>
<td>RMS</td>
<td>DMS</td>
<td>[Baruah-et al, IEEE TC-2009]</td>
</tr>
<tr>
<td></td>
<td>Sufficient test</td>
<td>Sufficient test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ Ci/Ti <= n*(2^{1/n}-1)</td>
<td>Σ Ci/Di <= n*(2^{1/n}-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precise test</td>
<td>Precise test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ri= Ci +</td>
<td>Ri= Ci +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ_{j ∈ HP(i)} [Ri/Tj]*Cj</td>
<td>Σ_{j ∈ HP(i)} [Ri/Tj]*Cj</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ri<=Ti</td>
<td>Ri<=Di</td>
<td></td>
</tr>
<tr>
<td>Dynamic priority</td>
<td>EDF</td>
<td>EDF</td>
<td>Σ Ci/Ti <=1</td>
</tr>
<tr>
<td></td>
<td>Precise test</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ Ci/Ti <=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensions to the basic RMS

- Deadline \leq Period
- Interrupt handling
- Non zero OH for context switch
- Non preemptive sections
- Resource Sharing
Handling context switch overhands in schedulability analysis

- Assume that
 - Cl is the extra time required to load the context for a new task (load contents of registers etc from TCB)
 - Cs is the extra time required to save the context for a current task (save contents of registers etc to TCB)
 - Note that in most cases, $Cl=Cs$, which is a parameter depending on hardware

![Diagram showing context switch](image-url)
Handling context switch overheads?

Thus, the **real computing time** for a task should be
\[C_i' = C_i + C_I + C_s \]

The schedulability analysis techniques we studied so far are applicable if we use the new computing time \(C' \).

- Unfortunately this is not right
Handling context switch

- \(R_i = C_i' + \sum_{j \in \text{HP}(i)} \left[\frac{R_i}{T_j} \right] \cdot C_j' \)
 - \(= C_i + 2C_{cs} + \sum_{j \in \text{HP}(i)} \left[\frac{R_i}{T_j} \right] \cdot (C_j + 2C_{cs}) \)
 - This is wrong!

- \(R_i = C_i + 2C_{cs} + \sum_{j \in \text{HP}(i)} \left[\frac{R_i}{T_j} \right] \cdot C_j \)
 - \(+ \sum_{j \in \text{HP}(i)} \left[\frac{R_i}{T_j} \right] \cdot 4C_{cs} \)
 - (each preemption \(\rightarrow \) 2 context switches)
 - \(= C_i + 2C_{cs} + \sum_{j \in \text{HP}(i)} \left[\frac{R_i}{T_j} \right] \cdot (C_j + 4C_{cs}) \)
 - This is right
Handling interrupts: problem and example

Task 0 is the interrupt handler with highest priority

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T=D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH, task 0</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Task 1</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Task 2</td>
<td>40</td>
<td>250</td>
</tr>
</tbody>
</table>

Task 0

0 60 100 200

Released here

Missing deadline = 50
Response time = 70

Task 1

0 50 60

Task 2
Handling interrupts: solution

- **Whenever possible:** move code from the interrupt handler to a special application task with the same rate as the interrupt handler to make the interrupt handler (with high priority) as shorter as possible.

- Interrupt processing can be inconsistent with RM priority assignment, and therefore can effect schedulability of task set (previous example):
 - Interrupt handler runs with high priority despite its period.
 - Interrupt processing may delay tasks with shorter periods (deadlines).
 - How to calculate the worst case response time?
Handling interrupts: example

Task 0 is the interrupt handler with highest priority

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T=D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Task 1</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>Task 2</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Task 3</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>
Handling non-preemptive sections

- So far, we have assumed that all tasks are preemptive regions of code. This not always the case e.g code for context switch though it may be short, and the short part of the interrupt handler as we considered before
 - Some section of a task is non preemptive
- In general, we may assume an extra parameter B in the task model, which is the computing time for the non preemptive section of a task.
 - $B_i = \text{computing time of non preemptive section of task } i$
Handling non preemptive sections: Problem and Example

Task 3 is an interrupt handler with highest priority
Task 4 has a non preemptive section of 20 sec

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T=D</th>
<th>blocking</th>
<th>blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>20</td>
<td>100</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Task 2</td>
<td>40</td>
<td>150</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Task 3</td>
<td>60</td>
<td>200</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Task 4</td>
<td>40</td>
<td>350</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
Handling non-preemptive sections: Response time calculation

- The equation for response time calculation:
 \[R_i = B_i + C_i + \sum_{j \in \text{HP}(i)} \left\lfloor \frac{R_i}{T_j} \right\rfloor C_j \]

- Where \(B_i \) is the longest time that task \(i \) can be blocked by lower-priority tasks with non preemptive section

 - Note that a task preempts only one task with lower priority within each period
So now, we have an equation:

\[R_i = B_i + C_i + 2C_{cs} + \sum_{j \in H_P(i)} \left(\frac{R_i}{T_j} \right) (C_j + 4C_{cs}) \]
The Jitter Problem

- So far, we have assumed that tasks are released at a constant rate (at the start of a constant period)
- This is true in practice and a realistic assumption
- However, there are situations where the period or rather the release time may ‘jitter’ or change a little, but the jitter is bounded with some constant J
- The jitter may cause some task missing deadline
Jitter: Example

\{(20,100),(40,150),(20, T3)\}

T3 is activated by T2 when it finishes within each period
Note that because the response time for T2 is not a constant, the period between two instances of T3 is not a constant: 170, 130
Jitter: Definition

- J(biggest) = maximal delay from period-start
- J(smallest) = minimal delay from period-start
- Jitter = J(biggest) - J(smallest)

- Jitter = the maximal length of the interval in which a task may be released non-deterministically

- If J(biggest) = J(smallest), then NO JITTER and therefore no influence on the other tasks with lower priorities
Jitter: Example

\{ (20,100), (40,150), (20, T3) \}

Pr(T1)=1, Pr(T2)=2, Pr(T3)=3

T3 is activated by T2 by the end of each instance

\[J(\text{biggest}) = R2(\text{worst case}), \quad J(\text{smallest}) = R2(\text{best case}) \]

\[\text{Jitter} = J(\text{biggest}) - J(\text{smallest}) = 60 - 40 = 20 \]
Jitter: Example

\{(20,100),(40,150),(20, T3)\}

T3 is activated by T2 at any time during its execution of an instance

\[J(\text{biggest})= R2(\text{worst case}), \quad J(\text{smallest})= R2(\text{best case})-C2 \]

\[J\text{itter} = J(\text{biggest})- J(\text{smallest})=60-0=60 \]
The number of preemptions due to Jitter

Task L will be preempted at least 1 time if $R_{\text{low}} > T_{\text{high}}$

Task L

One release

Task H

J_{high}

R_{low}

T_{low}

One more release due to the jitter
Which preempts L, one more time

T_{high}
The number of preemptions due to Jitter

Task L will be preempted at least 2 times if $R_{\text{low}} > T_{\text{high}} - J_{\text{high}}$

Task L will be preempted at least 2 times if $R_{\text{low}} > T_{\text{high}} - J_{\text{high}}$

Task L

One release

0

Task H

J_{high}

0

One release due to the jitter
Which preempts L, one more time

One more release due to the jitter
Which preempts L, one more time

R_{low}

T_{low}

T_{high}
Task L will be preempted at least 3 times if \(R_{\text{low}} > 2T_{\text{high}} - J_{\text{high}} \).
The number of preemptions experienced by a low-priority task due to the jitter of a high-priority task

$$\left\lceil \frac{R_{\text{low}} + J_{\text{high}}}{T_{\text{high}}} \right\rceil$$
Handling Jitters in schedulability analysis

- $R_i = C_i + \sum_{j \in HP(i)} \text{“number of preemptions”} \times C_j$
 - $R_i^* = R_i + J_i(\text{biggest})$ is the worst case response time of task i
 - $J_i(\text{biggest})$ is the worst case jitter

- If $R_i^* < D_i$, task i is schedulable otherwise no
Handling Jitters in schedulability analysis

- \[R_i = C_i + \sum_{j \in HP(i)} \left(\frac{(R_i + J_j)}{T_j} \right) * C_j \]
 - \(R_i^* = R_i + J_i\) (biggest)

- If \(R_i^* < D_i \), task i is schedulable, otherwise no
Now, we have an equation:

\[R_i = C_i + 2Ccs + B_i + \sum_{j \in HP(i)} [(R_i + J_j)/T_j] \times (C_j + 4Ccs) \]

The response time for task i

\[R_i^* = R_i + J_i(\text{biggest}) \]

\(J_i(\text{biggest}) \) is the "biggest jitter" for task i
Reource Sharing with HLP and PCP (and BIP)

- Let
 - $CS(k,S)$ denote the computing time for the critical section that task k uses semaphore S.
 - $Use(S)$ is the set of tasks using S

- For HLP and PCP, the maximal blocking
 - $RS_i = \max\{CS(k,S) | i,k \text{ in } Use(S), pr(k)<pr(i)\leq C(S)\}$

- How about BIP?
 - $RS_i = \text{Sum}\{CS(k,S) | i,k \text{ in } Use(S), pr(k)<pr(i)\leq C(S)\}$

- The response time for task i
 - $R_i = RS_i + C_i + \sum_{j \in HP(i)} \left[\frac{R_i}{T_j} \right] C_j$

What happens if there are more than one semaphores?
For HLP and PCP, the calculation works fine depending on the semaphore-usage patterns, but it doesn’t for BIP
Finally, we have an equation (why?):

\[R_i = C_i + 2C_{cs} + B_i + RSi + \sum_{j \in HP(i)} \left[\frac{(R_i + J_j)}{T_j} \right] \times (C_j + 4C_{cs}) \]
Summary: + and -

- **Static Cyclic Scheduling (SCS)**
 - Simple, and reliable, may be difficult to construct the time table and difficult to modify and (inflexible)

- **Earliest Deadline First (EDF)**
 - Simple in theory, but difficult to implement, non-stable
 - no precise analysis for tasks D<T

- **Rate Monotonic Scheduling (RMS)**
 - Simple in theory and practice, and easy to implement

- **Deadline Monotonic Scheduling (DMS)**
 - Similar to RMS

- Handling overheads, blocking, resource sharing (priority ceiling protocols)