Simplified Design Flow

|II-.......--
| @

Specification

"% =

‘_ Architecture /

= . 0-®

@”@‘@‘

Task Graph

1
olgte

Implementation

(z.)

3

(a picture from Ingo Sander)

Hardware architecture

So far, we have talked about only single processor systems
— “Concurrency” implemented by “scheduling”

RT systems often consist of several processors
* Multiprocessor systems

— “Tightly connected” processors by a “high-speed” interconnect e.g.
cross-bar, bus, NoC (network on chip) etc.

— Single processor with multi-thread

e Distributed Systems

— “Loosely connected” processors by a “low-speed” network e.g. CAN, Ethernet, Token
Ring etc. --

Multiprocessor vs.Distributed Systems

(examples)
Local
CPU Y N\ Complete system
M| M) [M] M
Sharod Inter-
me oonnect
e
C C
o © @&
S M| (M) [M
(a) (&) (©)

— shared memory model
— message passing multiprocessor
— wide area distributed system

Complete system

LAN
-- Local area distributed system (our focus)

(d)

Task Assignment

* Inthe design flow:
— First, the application is partitioned into tasks or task graphs.

— At some stage, the execution times, communication costs, data
and control dependencies of all the tasks become known.

e Task assignment determines
— how many processors needed (bin-packing problem)
— on which processor each task executes

e Thisis a very complex problem (NP-hard)
— Often done off-line
— Often heuristics work

Example of Task Assignment
(or Task Partitioning)

P1 P2 P1

nnnnnn I & s 5§ 0
(2.1} 5 (4. 1) 0.17

2 (3,1) 0.33 ol (10,13 010 ! 2 I3 10
3 4.1y 025 T (151 007

A , | §
4 (5,1) 0.20 g (2517 0.04

(EDF scheduling) Communication Cost

Oihjective is to find a partitioning, which is feasible at minimal costs
(here interference cost is neglected!)

Task Assignment

* The task models used in task assignment can vary in complexity
depending what considered/ignored:

hip &5 & 5 4
— Communication costs -. A
— Data and control dependencies I N
o ,
|

— Resource requirements e.g. WCET, memory etc

Communication Cost

* |In multi-core platforms with shared caches, communication
costs for tasks on the same chip may be very small

* [tis often meaningful to consider the execution time
requirement (WCET) and ignore communication in an early

design phase

Today’s plan

Why multiprocessor?
— energy, performance and predictability
What are multiprocessor systems
— OSetc
Design RT systems on multiprocessors
— Task Assigment
Multiprocessor scheduling
— (semi-)partitioned scheduling
— global scheduling

Why multiprocessor systems?

To get high performance and to reduce energy
consumption

Hardware: Trends

Multicore:
borf ¥ Requires
errormance / P r ” I

, [log] ’ aratiel
y Applications
/
1000 | /

Single Core
100 |

10 .

Year

Theoretically you may get:

* Higher Performance

— Increasing the cores -- unlimited computing power 00 |

* Lower Power Consumption

— Increasing the cores, decreasing the frequency
« Performance (IPC) = Cores* F =» 2* Cores * F/2 =» Cores * F
+ Power= C*V2*F=»2*C*(V/2)2 *F/2 D C*V2/4*F

> Keep the “same performance” using 7 of the energy (by
doubling the cores)

This sounds great for embedded & real-time applications!

10

CPU frequency vs Power consumption

1. Standard processor over-clocked 20%
2. Standard processor
3. Two standard processors each under-clocked 20%

Duwual-Core
| Performance 1.73x

1.73x

Over-clocked Max Frequency Dual-core
(+20%) (-20%)

What’s happening now?

* General-Purpose Computing

(Symposium on High-Performance Chips, Hot Chips 21, Palo Alto, Aug 23-25, 2009)

— 4 cores in notebooks

— 12 cores in servers

e AMD 12-core Magny-Cours will consume less energy
than previous generations with 6 cores

— 16 cores for IBM servers, Power 7

* Embedded Systems
— 4 cores in ARM11 MPCore embedded processors

What next?

 Manycores (>100’s of cores) predicted to be here
in a few years — e.g. Ericsson

What are multiprocessor systems?

“Tightly connected” processors by a “high-speed”
interconnect e.g. cross-bar, bus, NoC etc.

Typical Multicore Architecture

L1 L1 L1 L1

L2 Cache

L1 L1 L1

_ Bandwidth _

-

—

Off-chip memory

15

Single processor vs. multiprocessor OS

Single-processor U5

5 easier to support kernel synchronization - why?

disabling interrupts to prevent concurrent executions
fine-grained locking vs. coarse-grained locking

5 easier to perform scheduling
which to run, not where to run

Multi-processor OS5
o 05 structure

5 synchronization

> scheduling

Each node is a “complete system” running

its own OS but sharing the memory

CPU 1 CPU 2 CPU3 CPU 4 Memory 110
Has Has Has Has :,L,a [3;.?1,1
privale private private private 3 4
os 0s os oS Cala | Dhata
05 code
*
Bus

= Each CPU has its own operating system
o gquick to port from a single-processor 05
= Disadvantages

o difficult to share things (processing cycles, memory, buffer
cache)

One master node running the OS

CPU 1 CcPU 2 CPU 3 CPU 4 Memory &
Mastar Slave Slave Slave User
runs runs user NS User runs user processes
05 PrOCESSES pProcessas processes 0%
=
Bus

= All operating system functionality goes to one CPU
o no multiprocessor concurrency in the kernel
= Disadvantage

o 05 CPU consumption may be large so the 05 CPU becomes
the bottleneck {especially in a machine with many CPUs)

All nodes are “sharing” the OS kernel:
Symmetric Multiprocessing (SMP)

CPLU 1 cPL 2 CPL 3 CPU 4 Memory 11D
Runs Runs Funs Runs
users and users and users and users and

sharad OS5 shared OS5 shared OS5 shared OS 05 O

\ \Lﬂcks.

Bus

= All CPUs run a single 05 instance

= The O5 itself must handle multiprocessor synchronization

o have a big kernel lock - only one processor can execute in the
kernel at a time

5 support fine-grain synchronization

Multiprocessor scheduling

* "Given a set J of jobs where job j; has length |. and a number of processors m,
what is the minimum possible time required to schedule all jobs in Jon m

processors such that none overlap?” — Wikipedia

— That s, design a schedule such that the response time of the
last tasks is minimized

(Alternatively, given M processors and N tasks,

find a mapping from tasks to processors such that
all the tasks are schedulable)

* The problem is NP-complete
* Itisalso known as the “load balancing problem”

Multiprocessor scheduling
— static and dynamic task assignment

e Partitioned scheduling

— Static task assignment
* Each task may only execute on a fixed processor
* No task migration

e Semi-partitioned scheduling

— Static task assignment
* Each instance (or part of it) of a task is assigned to a fixed processor

* task instance or part of it may migrate

* Global scheduling

— Dynamic task assignment
* Any instance of any task may execute on any processor
* Task migration

Multiprocessor Scheduling

Global Scheduling Partitioned Scheduling Pa\:::ﬂ}o;aesolksscphlﬁil;gng

new task

waiting queue i

. 00

9 9 0
© 0 ©
® 0 ©
o6 FEE

coul cpu2 cpu3 coul cpu2 cpu3 cpoul cpu?2

Multiprocessor (multicore) Scheduling

e Significantly more difficult:
— Timing anomalies
— Hard to identify the worst-case scenario
— Bin-packing/NP-hard problems

— Multiple resources e.g. caches, bandwidth

Underlying causes

— The "root of all evil” in global scheduling: (Liu, 1969):

The simple fact that a task can use only one processor even
when several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of multiple

Processors.

— Dhall’s effect: with RM, DM and EDF, some low-
utilization task sets can be un-schedulable regardless

of how many processors are used.

— Hard-to-find critical instant: a critical instant does not
always occur when a task arrives at the same time as
all its higher-priority tasks.

Example: Anomali under Resource constraints

5 tasks on 2 CPUs, sharing 1 resource
e StaticassignmentT1, T2onP1 and T3, T4, T5 on P2
* Reducing the computation time of T1 will increase the response time!

critical section

80
70
60
50
40
30
20
10

Best Known Results

From Uppsala
RTAS 2010

~

Liu and Layland’s
Utilization Bound

3

66
[RTCSA'06]
[TPDS’05] [ECRTS’03] [RTSS’04]
[OPODIS) . . .
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
Task Splitting
Global Partitioned

Multiprocessor Scheduling

Global Scheduling

Global Scheduling

new task

waiting queue

. 00

n

cpul cpu 2 cpu 3

Global scheduling

* All ready tasks are kept in a global queue

 When selected for execution, a task can be

dispatched to any processor, even after being
preempted

Global scheduling Algorithms

 EDF — Unfortunately not optimal!
— No simple schedulability test known (only sufficient)

* Fixed Priority Scheduling e.g. RM
— Difficult to find the optimal priority order
— Difficult to check the schedulability

* Any algorithm for single processor scheduling may
work, but schedulability analysis is non-trivial.

Global Scheduling: + and -

Advantages:
— Supported by most multiprocessor operating systems
* Windows NT, Solaris, Linux, ...

— Effective utilization of processing resources (if it works)

* Unused processor time can easily be reclaimed at run-time (mixture of hard
and soft RT tasks to optimize resource utilization)

Disadvantages:
— Few results from single-processor scheduling can be used
— No “optimal” algorithms known except idealized assumption (Pfair sch)

— Poorresource utilization for hard timing constraints
* No more than 50% resource utilization can be guaranteed for hard RT tasks
— Suffers from scheduling anomalies

e Adding processors and reducing computation times and other parameters can
actually decrease optimal performance in some scenarios!

Partition-Based Scheduling

Partitioned Scheduling

cpul cpu 2

Partitioned scheduling

* Two steps:
— Determine a mapping of tasks to processors
— Perform run-time scheduling

* Example: Partitioned with EDF

— Assign tasks to the processors such that no processor’s
capacity is exceeded (utilization bounded by 1.0)

— Schedule each processor using EDF

Bin-packing algorithms

* The problem concerns packing objects of varying
sizes in boxes (”bins”) with the objective of
minimizing number of used boxes.

— Solutions (Heuristics): Next Fit and First Fit
* Application to multiprocessor systems:

— Bins are represented by processors and objects by tasks.

— The decision whether a processor is “full” or not is derived
from a utilization-based schedulability test.

Rate-Monotonic-First-Fit (RMFF):
Dhall and Liu, 1978]

e First, sort the tasks in the order of increasing periods.

* Task Assignment

— All tasks are assigned in the First Fit manner starting from
the task with highest priority

— A task can be assigned to a processor if all the tasks
assigned to the processor are RM-schedulable i.e.

* the total utilization of tasks assigned on that processor is bounded
by n(2/"-1) where n is the number of tasks assigned.

(One may also use the Precise test to get a better assignment!)

— Add a new processor if needed for the RM-test.

Partitioned scheduling

* Advantages:

— Most techniques for single-processor scheduling
are also applicable here

* Partitioning of tasks can be automated
— Solving a bin-packing algorithm
e Disadvantages:

— Cannot exploit/share all unused processor time
— May have very low utilization, bounded by 50%

Partition-Based Scheduling with Task-Splitting

Partitioned Scheduling
with Task Splitting

cpul cpu 2

E
cpu 3

Partition-Based scheduling with Task Splitting

* High resource utilization
* High overhead (due to task migration)

Fixed-Priority Multiprocessor Scheduling

