
Simplified Design Flow

(a picture from Ingo Sander)

Hardware architecture

So far, we have talked about only single processor systems
– “Concurrency” implemented by “scheduling”

RT systems often consist of several processors

• Multiprocessor systems
– “Tightly connected” processors by a “high-speed” interconnect e.g.

cross-bar, bus, NoC (network on chip) etc.

– Single processor with multi-thread

• Distributed Systems
– “Loosely connected” processors by a “low-speed” network e.g. CAN, Ethernet, Token

Ring etc. --

Multiprocessor vs.Distributed Systems

-- Local area distributed system (our focus)

Complete system

(d)

LAN

(examples)

Task Assignment

• In the design flow:
– First, the application is partitioned into tasks or task graphs.

– At some stage, the execution times, communication costs, data
and control dependencies of all the tasks become known.

• Task assignment determines
– how many processors needed (bin-packing problem)

– on which processor each task executes

• This is a very complex problem (NP-hard)
– Often done off-line

– Often heuristics work

Example of Task Assignment
(or Task Partitioning)

P2P1 P1

Task Assignment

• The task models used in task assignment can vary in complexity

depending what considered/ignored:
– Communication costs

– Data and control dependencies

– Resource requirements e.g. WCET, memory etc

• In multi-core platforms with shared caches, communication
costs for tasks on the same chip may be very small

• It is often meaningful to consider the execution time
requirement (WCET) and ignore communication in an early
design phase

Today’s plan
• Why multiprocessor?

– energy, performance and predictability

• What are multiprocessor systems
– OS etc

• Design RT systems on multiprocessors
– Task Assigment

• Multiprocessor scheduling
– (semi-)partitioned scheduling

– global scheduling

Why multiprocessor systems?

To get high performance and to reduce energy
consumption

1

10

100

1000

Now

Performance
[log]

Year

Single Core

Multicore:
Requires
Parallel
Applications

Hardware: Trends

Theoretically you may get:

• Higher Performance

– Increasing the cores -- unlimited computing power  !

• Lower Power Consumption

– Increasing the cores, decreasing the frequency
• Performance (IPC) = Cores * F  2* Cores * F/2  Cores * F

• Power = C * V2 * F  2* C * (V /2)2 * F/2  C * V2 /4 * F

 Keep the “same performance” using ¼ of the energy (by
doubling the cores)

10

This sounds great for embedded & real-time applications!

CPU frequency vs Power consumption

1. Standard processor over-clocked 20%

2. Standard processor

3. Two standard processors each under-clocked 20%

What’s happening now?

• General-Purpose Computing
(Symposium on High-Performance Chips, Hot Chips 21, Palo Alto, Aug 23-25, 2009)

– 4 cores in notebooks

– 12 cores in servers

• AMD 12-core Magny-Cours will consume less energy
than previous generations with 6 cores

– 16 cores for IBM servers, Power 7

• Embedded Systems

– 4 cores in ARM11 MPCore embedded processors

What next?

• Manycores (>100’s of cores) predicted to be here
in a few years – e.g. Ericsson

What are multiprocessor systems?

“Tightly connected” processors by a “high-speed”
interconnect e.g. cross-bar, bus, NoC etc.

15

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

B
an

d
w

id
th

Typical Multicore Architecture

15

L2 Cache

Off-chip memory

Single processor vs. multiprocessor OS

Each node is a “complete system” running
its own OS but sharing the memory

One master node running the OS

All nodes are “sharing” the OS kernel:
Symmetric Multiprocessing (SMP)

Multiprocessor scheduling

• "Given a set J of jobs where job ji has length li and a number of processors mi,
what is the minimum possible time required to schedule all jobs in J on m
processors such that none overlap?" – Wikipedia

– That is, design a schedule such that the response time of the
last tasks is minimized

(Alternatively, given M processors and N tasks,
find a mapping from tasks to processors such that
all the tasks are schedulable)

• The problem is NP-complete
• It is also known as the “load balancing problem”

Multiprocessor scheduling
– static and dynamic task assignment

• Partitioned scheduling
– Static task assignment

• Each task may only execute on a fixed processor

• No task migration

• Semi-partitioned scheduling
– Static task assignment

• Each instance (or part of it) of a task is assigned to a fixed processor

• task instance or part of it may migrate

• Global scheduling
– Dynamic task assignment

• Any instance of any task may execute on any processor

• Task migration

Multiprocessor Scheduling

52

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

cpu 1 cpu 2 cpu 3

2

5

2

1

22

3

6

7

4

2 3

Partitioned Scheduling
Partitioned Scheduling

with Task Splitting

Multiprocessor (multicore) Scheduling

• Significantly more difficult:

– Timing anomalies

– Hard to identify the worst-case scenario

– Bin-packing/NP-hard problems

– Multiple resources e.g. caches, bandwidth

– … …

Underlying causes

– The ”root of all evil” in global scheduling: (Liu, 1969):

The simple fact that a task can use only one processor even
when several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of multiple
processors.

– Dhall’s effect: with RM, DM and EDF, some low-
utilization task sets can be un-schedulable regardless
of how many processors are used.

– Hard-to-find critical instant: a critical instant does not
always occur when a task arrives at the same time as
all its higher-priority tasks.

Example: Anomali under Resource constraints

• 5 tasks on 2 CPUs, sharing 1 resource

• Static assignment T1, T2 on P1 and T3, T4, T5 on P2

• Reducing the computation time of T1 will increase the response time!

1 2

3 4 5

P1

P2

0 2 4 6 8 10 12 14

1 2

3 4 5

P1

P2

0 2 4 6 8 10 12 14

16 18

16 18

20 22

20 22

critical section

blocking

Best Known Results

20

10

30

40

60

50

70

80

Multiprocessor Scheduling

Global Partitioned

Fixed

Priority

Dynamic

Priority

Task Splitting

Fixed

Priority

Dynamic

Priority

Fixed

Priority

Dynamic

Priority

38

%

50

Liu and Layland’s

Utilization Bound

50 50

65 66

[OPODIS’08]

[TPDS’05] [ECRTS’03] [RTSS’04]

[RTCSA’06]

From Uppsala
RTAS 2010

69.3

Global Scheduling

52

1 6

8

4

new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

Global scheduling

• All ready tasks are kept in a global queue

• When selected for execution, a task can be
dispatched to any processor, even after being
preempted

Global scheduling Algorithms

• EDF – Unfortunately not optimal!

– No simple schedulability test known (only sufficient)

• Fixed Priority Scheduling e.g. RM

– Difficult to find the optimal priority order

– Difficult to check the schedulability

• Any algorithm for single processor scheduling may
work, but schedulability analysis is non-trivial.

Global Scheduling: + and -

• Advantages:
– Supported by most multiprocessor operating systems

• Windows NT, Solaris, Linux, ...

– Effective utilization of processing resources (if it works)
• Unused processor time can easily be reclaimed at run-time (mixture of hard

and soft RT tasks to optimize resource utilization)

• Disadvantages:
– Few results from single-processor scheduling can be used
– No “optimal” algorithms known except idealized assumption (Pfair sch)
– Poor resource utilization for hard timing constraints

• No more than 50% resource utilization can be guaranteed for hard RT tasks

– Suffers from scheduling anomalies
• Adding processors and reducing computation times and other parameters can

actually decrease optimal performance in some scenarios!

Partition-Based Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

Partitioned Scheduling

Partitioned scheduling

• Two steps:

– Determine a mapping of tasks to processors

– Perform run-time scheduling

• Example: Partitioned with EDF

– Assign tasks to the processors such that no processor’s
capacity is exceeded (utilization bounded by 1.0)

– Schedule each processor using EDF

Bin-packing algorithms

• The problem concerns packing objects of varying
sizes in boxes (”bins”) with the objective of
minimizing number of used boxes.

– Solutions (Heuristics): Next Fit and First Fit

• Application to multiprocessor systems:

– Bins are represented by processors and objects by tasks.

– The decision whether a processor is ”full” or not is derived
from a utilization-based schedulability test.

Rate-Monotonic-First-Fit (RMFF):
[Dhall and Liu, 1978]

• First, sort the tasks in the order of increasing periods.

• Task Assignment

– All tasks are assigned in the First Fit manner starting from
the task with highest priority

– A task can be assigned to a processor if all the tasks
assigned to the processor are RM-schedulable i.e.
• the total utilization of tasks assigned on that processor is bounded

by n(21/n-1) where n is the number of tasks assigned.

(One may also use the Precise test to get a better assignment!)

– Add a new processor if needed for the RM-test.

Partitioned scheduling

• Advantages:

– Most techniques for single-processor scheduling
are also applicable here

• Partitioning of tasks can be automated

– Solving a bin-packing algorithm

• Disadvantages:

– Cannot exploit/share all unused processor time

– May have very low utilization, bounded by 50%

Partition-Based Scheduling with Task-Splitting

cpu 1 cpu 2 cpu 3

2

5

2

1

22

3

6

7

4

2 3

Partitioned Scheduling
with Task Splitting

Partition-Based scheduling with Task Splitting

• High resource utilization

• High overhead (due to task migration)

Fixed-Priority Multiprocessor Scheduling

