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(a picture from Ingo Sander)



Hardware architecture

So far, we have talked about only single processor systems 
– “Concurrency”  implemented by “scheduling”

RT systems often consist of several processors

• Multiprocessor systems
– “Tightly connected” processors by a “high-speed” interconnect e.g. 

cross-bar, bus, NoC (network on chip) etc. 

– Single processor with multi-thread

• Distributed Systems
– “Loosely connected” processors by a “low-speed” network e.g. CAN, Ethernet, Token 

Ring etc. --



Multiprocessor vs.Distributed Systems

-- Local area distributed system (our focus)
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Task Assignment

• In the design flow:
– First, the application is partitioned into tasks or task graphs.

– At some stage, the execution times, communication costs,  data 
and control dependencies of all the tasks become known.

• Task assignment determines
– how many processors needed (bin-packing problem)

– on which processor each task executes

• This is a very complex problem (NP-hard)
– Often done off-line

– Often heuristics work



Example of Task Assignment 
(or Task Partitioning)

P2P1 P1



Task Assignment

• The task models used in task assignment can vary in complexity

depending what considered/ignored:
– Communication costs

– Data and control dependencies

– Resource requirements e.g. WCET, memory etc

• In multi-core platforms with shared caches, communication 
costs for tasks on the same chip may be very small

• It is often meaningful to consider the execution time 
requirement (WCET) and ignore communication in an early 
design phase



Today’s plan
• Why multiprocessor?

– energy, performance and predictability

• What are multiprocessor systems
– OS etc

• Design RT systems on multiprocessors
– Task Assigment

• Multiprocessor scheduling 
– (semi-)partitioned scheduling

– global scheduling



Why multiprocessor systems?

To get high performance and to reduce energy 
consumption
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Theoretically you may get:

• Higher Performance 

– Increasing the cores -- unlimited computing power  ! 

• Lower Power Consumption

– Increasing the cores,  decreasing the frequency
• Performance (IPC)  = Cores * F  2* Cores * F/2  Cores * F

• Power =  C * V2 * F  2* C * (V /2)2 * F/2  C * V2 /4 * F

 Keep the  “same performance” using ¼ of the energy  (by 
doubling the cores)

10

This sounds great for embedded & real-time applications!



CPU frequency vs Power consumption

1. Standard processor over-clocked 20%

2. Standard processor

3. Two standard processors each under-clocked 20% 



What’s happening now?

• General-Purpose Computing
(Symposium on High-Performance Chips, Hot Chips 21, Palo Alto, Aug 23-25, 2009) 

– 4 cores in notebooks

– 12 cores in servers

• AMD 12-core Magny-Cours will consume less energy 
than previous generations with 6 cores

– 16 cores for IBM servers, Power 7

• Embedded Systems

– 4 cores in ARM11 MPCore embedded processors



What next?

• Manycores (>100’s of cores) predicted to be here 
in a few years – e.g. Ericsson



What are multiprocessor systems?

“Tightly connected” processors by a “high-speed” 
interconnect e.g. cross-bar, bus, NoC etc. 
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Single processor vs. multiprocessor OS



Each node is a “complete system” running 
its own OS but sharing the memory



One master node running the OS 



All nodes are “sharing” the OS kernel:
Symmetric Multiprocessing (SMP)



Multiprocessor scheduling

• "Given a set J of jobs where job ji has length li and a number of processors mi, 
what is the minimum possible time required to schedule all jobs in J on m 
processors such that none overlap?" – Wikipedia

– That is, design a schedule such that the response time of the 
last tasks is minimized

(Alternatively, given M processors and N tasks,
find a mapping from tasks to processors such that 
all the tasks are schedulable)

• The problem is NP-complete
• It is also known as the “load balancing problem”



Multiprocessor scheduling 
– static and dynamic task assignment

• Partitioned scheduling 
– Static task assignment

• Each task may only execute on a fixed processor

• No task migration

• Semi-partitioned scheduling 
– Static task assignment

• Each instance (or part of it) of a task is assigned to a fixed processor

• task instance or part of it may migrate

• Global scheduling
– Dynamic task assignment

• Any  instance of any task may execute on any processor

• Task migration



Multiprocessor Scheduling
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Multiprocessor (multicore) Scheduling

• Significantly more difficult:

– Timing anomalies

– Hard to identify the worst-case scenario

– Bin-packing/NP-hard problems

– Multiple resources e.g. caches, bandwidth

– … … 



Underlying causes

– The ”root of all evil” in global scheduling: (Liu, 1969):

The simple fact that a task can use only one processor even 
when several processors are free at the same time adds a 
surprising  amount of difficulty to the scheduling of multiple 
processors.

– Dhall’s effect: with RM, DM and EDF, some low-
utilization task sets can be un-schedulable regardless 
of how many processors are used.

– Hard-to-find critical instant:  a critical instant does not 
always occur when a task arrives at the same time as 
all its higher-priority tasks.



Example: Anomali under Resource constraints

• 5  tasks on 2 CPUs, sharing 1 resource

• Static assignment T1, T2 on P1  and T3, T4, T5 on P2

• Reducing the computation time of T1 will increase the response time!
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Best Known Results
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Global Scheduling
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Global scheduling

• All ready tasks are kept in a global queue

• When selected for execution,  a task can be 
dispatched to any processor,  even after being 
preempted



Global scheduling Algorithms

• EDF – Unfortunately not optimal!

– No simple schedulability test known (only sufficient)

• Fixed Priority Scheduling e.g. RM

– Difficult  to find the optimal priority order

– Difficult  to check the schedulability

• Any algorithm for single processor scheduling may 
work, but schedulability analysis is non-trivial.



Global Scheduling: + and -

• Advantages:
– Supported by most multiprocessor operating systems

• Windows NT,  Solaris,  Linux, ...

– Effective utilization of processing resources (if it works)
• Unused processor time can easily be reclaimed at run-time (mixture of hard 

and soft RT tasks to optimize resource utilization)

• Disadvantages:
– Few results from single-processor scheduling can be used
– No “optimal” algorithms known except idealized assumption (Pfair sch)
– Poor resource utilization for hard timing constraints

• No more than 50% resource utilization can be guaranteed for hard RT tasks

– Suffers from scheduling anomalies
• Adding processors and reducing computation times and other parameters can 

actually decrease optimal performance in some scenarios! 



Partition-Based Scheduling
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Partitioned scheduling

• Two steps:

– Determine a mapping of tasks to processors 

– Perform run-time scheduling

• Example: Partitioned with EDF 

– Assign tasks to the processors such that no processor’s 
capacity is exceeded (utilization bounded by 1.0)

– Schedule each processor using EDF



Bin-packing algorithms

• The problem concerns packing objects of varying 
sizes in boxes (”bins”) with the objective of 
minimizing number of used boxes.

– Solutions (Heuristics): Next Fit and First Fit

• Application to multiprocessor systems:

– Bins are represented by processors and objects by tasks.

– The decision whether a processor is ”full” or not is derived 
from a utilization-based schedulability test.



Rate-Monotonic-First-Fit (RMFF): 
[Dhall and Liu, 1978]

• First, sort the tasks in the order of increasing periods.

• Task Assignment

– All tasks are assigned in the First Fit manner starting from 
the task with highest priority

– A task can be assigned to a processor if all the tasks 
assigned to the processor are RM-schedulable i.e.
• the total utilization of tasks assigned on that processor is bounded 

by n(21/n-1) where n is the number of tasks assigned.

(One may also use the Precise test to get a better assignment!)

– Add a new processor if needed for the RM-test.



Partitioned scheduling

• Advantages:

– Most techniques for single-processor scheduling 
are also applicable here

• Partitioning of tasks can be automated

– Solving a bin-packing algorithm

• Disadvantages:

– Cannot exploit/share all unused processor time

– May have very low utilization,  bounded by 50%



Partition-Based Scheduling with Task-Splitting
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Partition-Based scheduling with Task Splitting

• High resource utilization

• High overhead (due to task migration)

Fixed-Priority Multiprocessor Scheduling


