
Ada

A quick crash course

Patrik Broman

September 8, 2014

Abstract

This is a quick course for someone who knows how to program, and
needs to quickly understand the basic syntax of Ada.

1



Contents

1 Goals of this tutorial

The purpose is to prepare a student for a course that requires some pro-
gramming experience and uses Ada as the programming language. After
this course the student should be able to understand the basic syntax of the
language and, utilizing previous knowledge, be able to create more advanced
programs in Ada.

2 Prerequsites

The student is assumed to have some experience with an imperative pro-
gramming language, such as Python, C/C++, Java, Pascal etc. More specif-
ically, the student is assumed to be familiar with concepts like variables,
functions, branching, loops and other basic concepts of programming.

3 Other assumptions

It’s assumed that a vast majority of the ones reading this tutorial already
knows C/C++ or Java. With respect to that, some examples will be shown
in both C/C++ and Ada to show the differences. Java and C/C++ are
very similar in syntax, so if you’re a Java programmer it should not matter.
Please note that knowledge in one of these languages is not required to
understand this course, but for most of the examples comparations with
C/C++ is made.

4 What is Ada?

Ada is an imperative programming language. It supports OOP and is stati-
cally typed. The syntax is very similar to Pascal. What really is significant
for Ada is the built-in support for multithreading, synchronisation, resource
protection and such things. The language is not case sensitive.

5 Ada

5.1 Hello World!

Hello World!
Yes, we follow traditions. Here is the classic program in Ada:

−− h e l l o . adb
with Ada . Text IO ;

2



use Ada . Text IO ;

procedure He l lo i s
begin

Put Line (” He l lo world ! ” ) ;
end He l lo ;

Let’s have a look at each row. The first row is simply a comment. Com-
ments starts with two dashes. The second row corresponds to #include <
stdio.h > in C and #include < iostream > in C++. The next row corre-
sponds to namespace std in C++.

Then we declare a procedure, wich is the same as a fuction with void
as return type. Code blocks are created with the keywords begin and end
instead of curly braces. You may notice that the name of the procedure
appears at the last line. This is not required for procedures and functions,
but recommended. When declaring tasks it is required though. It is also
required for ending if statements and such. Here is the same program again,
but with corresponding C++ code in comments:

−− h e l l o . adb −− // h e l l o . cpp
with Ada . Text IO ; −− #inc lude <iostream>
use Ada . Text IO ; −− us ing namespace std ;

procedure He l lo i s −− void main ( )
begin −− {

Put Line (” He l lo world ! ” ) ; −− cout << ” He l lo world ! ” << endl ;
end He l lo ; −− }

5.2 Basic structure of a program

An Ada source file contains one compilation unit. Declaring different pro-
cedures in one file will not work. This is not a valid program:

−− notva l i d . adb
with Ada . Text Io ;
use Ada . Text Io ;

procedure Foo i s
begin

Put Line (” Foo ” ) ;
end Foo ;

procedure no tva l i d i s

3



begin
Put Line (” Not v a l i d ” ) ;

end notva l i d ;

The compiler outputs this error message:
gcc-4.9 -c notvalid.adb notvalid.adb:9:01: end of file expected, file can

have only one compilation unit gnatmake: ”notvalid.adb” compilation error
There are different ways to get around this. One way is to put the

procedure Foo in a separate file called foo.adb and add the statement with
foo; to notvalid.adb. Another way is to declare foo inside notvalid, as shown
below:

−− v a l i d . adb
with Ada . Text Io ;
use Ada . Text Io ;

procedure v a l i d i s
procedure Foo i s
begin

Put Line (” Foo ” ) ;
end Foo ;

begin
Put Line (” Val id ” ) ;

end v a l i d ;

Naming the file to the compilation unit is not required but the compiler
will generate a warning unless you do. And yes, we changed the name to
valid for obvious reasons.

5.3 Variables

In Ada all variables a procedure or function will be using can be declared
before the begin statement. Here is a program that asks for two numbers
and prints the sum:

−− sum . adb
with Ada . Text Io ; use Ada . Text Io ;
with Ada . I n t e g e r T e x t I o ; use Ada . I n t e g e r T e x t I o ;

procedure Sum i s
A,B,C : I n t e g e r ;

begin
Put (” F i r s t number : ” ) ;
Get (A) ;
Put (” Second Number : ” ) ;

4



Get (B) ;
C:=A+B;
Put (”The sum i s ” ) ;
Put (C) ;

end Sum;

As you can see the variables are declared before the actual code. It’s also
possible to declare the variables inside the code block, using the keyword
declare. There are many different types. In general, their names is the
same as in C++, but withoug acronyms. Instead of int, you type ingeger.
Instead of char, you type character and so on. Declaring a variable follows
this syntax:

<name> [ , <name > . . . ] : <type> [ := <value > ] ;

In it’s most basic form, you just declare one variable and chose the type.
Here is an example:

foo : I n t e g e r ;

You may also declare several variables at once:

foo , bar , foobar : I n t e g e r ;

Another thing you can do is to initialize a variable upon declaration:

foo : I n t e g e r := 1337 ;

If you want the variable to be constant, you add the constant keyword:

foo : Constant I n t e g e r := 1337 ;

5.4 Operators

The operators works about the same as in C++, but some are slightly
different. Assignment is performed with := instead of =. To compare values
= is used instead of ==.

5.5 Functions and procedures

Functions and procedures are the same thing. The only difference is that
functions returns something, while a procedure don’t. A procedure looks
like this:

procedure <name> [(< arguments ) ] i s
<v a r i a b l e d e c l a r a t i o n s>
begin
<code>
end name ;

5



If the procedure (or functions) does not take any arguments the paren-
theses are omitted both in declaration and upon calling. A procedure that
takes three integers as argument and stores the sum of the first two variables
in the third looks like this¿

procedure Sum(A,B : in I n t e g e r ; C: out I n t e g e r ) i s
begin

C:=A+B;
end Sum;

If you want a function that takes two integers and returns the biggest it
would instead look like this:

f unc t i on Max(A,B : in I n t e g e r ) re turn I n t e g e r i s
begin

i f A>B then
return A;

e l s e
re turn B;

end Max;

The keywords in and out determines if the arguments are used to be read or
written to. If none is given, in will be assumed. You can’t write to a variable
unless out is specified. You can read from an out variable, but unless you
have initialized it inside the function it will only contain garbage, even if
the variable is initialized outside. So if you want to write a function that
increments the value by one both in and out are needed:

procedure Inc (A: in out I n t e g e r ) i s
begin

A:=A+1;
end Inc ;

It should be mentioned that the keyword in is also used for membership
of sets.

5.6 Loops

5.6.1 Endless loop

loop
−− code
end loop ;

5.6.2 While loop

whi le <cond i t ion> loop
−− code
end loop ;

6



5.6.3 For loop

f o r i in I n t e g e r range 1 . . 1 0 loop
−−code
end loop ;

We stop here and take a look at the first row. A for loop in Ada works
on lists. We here create the loop variable i and let it have all the values of
integer 1 to 10. If you are used to Python or Matlab this should not be so
strange, but it’s quite different from C. The above code can be shortened
to:

f o r i in range 1 . . 1 0 loop
−− code
end loop ;

Arrays can be easily looped. If X is an array, you can loop over all
elements like this:

f o r i in X’ Range loop
−−code
end loop ;

It should be mentioned that loop variables can’t be changed inside the
loop. This code is not valid:

f o r i in 1 . . 1 0 loop
i := i +1;

end loop ;

5.6.4 Do-while loop

loop
−−code
e x i t when <cond i t ion>
end loop ;

but you can also have code after the exit statement:

loop
−−code
e x i t when <cond i t ion>
−−code
end loop ;

In that sense, this loop is not really like a do-while. It’s more like a
while(true){if(< condition >)break; }

Finally, you can name loops, but if you do, you have to use the name
after the end loop statement, and you may use it after exit.

7



my loop :
loop :
−−code
e x i t my loop when <cond i t ion> −− my loop may be omitted
−−code
end loop my loop ; −− my loop may not be omitted

6 Legal

This document is published under GPL v3.0 and may be distributed under
GPL v3.0 or later. http://www.gnu.org/copyleft/gpl.html

8

http://www.gnu.org/copyleft/gpl.html

