Covariance function: \(r_w(\tau) \triangleq EW(t + \tau)w^T(t) \Rightarrow r_w(\tau) = r_w^T(-\tau) \)

Spectral density:

Discrete time: \(\Phi_w(\omega) \triangleq \sum_{\tau=-\infty}^{\infty} r_w(\tau)e^{-i\omega\tau} \) (for \(-\pi \leq \omega < \pi \))

\[r_w(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_w(\omega)e^{i\omega\tau} d\omega \quad \text{and} \quad r_w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_w(\omega)d\omega \]

Continuous time: \(\Phi_w(\omega) \triangleq \int_{-\infty}^{\infty} r_w(\tau)e^{-i\omega\tau} d\tau \) (for \(\omega \in \mathbb{R} \))

\[r_w(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_w(\omega)e^{i\omega\tau} d\omega \quad \text{and} \quad r_w(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_w(\omega)d\omega \]

In both cases \(\Phi_w(\omega) = \Phi_w^*(\omega) \geq 0 \).

\[\Rightarrow \text{for scalar } w: \Phi_w(\omega) = \Phi_w(-\omega) \geq 0 \text{ for all } \omega.\]
Repetition: Linear filtering and spectral factorization

White noise: \(w(t) \) white noise \(\Leftrightarrow \Phi_w(\omega) = R_w = \text{constant} \)

Discrete time: \(r_w(\tau) = 0 \) for all \(\tau \neq 0 \)

Linear filtering:

Discrete time: \(y(k) = G(q)u(k) \Rightarrow \Phi_y(\omega) = G(e^{i\omega})\Phi_u(\omega)G^*(e^{i\omega}) \)

Continuous time: \(y(t) = G(p)u(t) \Rightarrow \Phi_y(\omega) = G(i\omega)\Phi_u(\omega)G^*(i\omega) \)

\(\Rightarrow \Phi_y(\omega) = |G|^2\Phi_u(\omega) \) for the scalar case

Spectral factorization: If \(0 \leq \Phi_w(\omega) < \infty \) is rational in

- (discrete time:) \(\cos \omega \) there exists a rational \(G(z) \)
- (continuous time:) \(\omega^2 \) there exists a rational \(G(s) \)

which is stable and minimum phase, such that \(\Phi_w(\omega) = |G|^2 \) (with \(z = e^{i\omega}/s = i\omega \) respectively).
State space models

Discrete time: Let \(v(k) \) be white noise with \(Ev(k) = 0 \) and \(r_v(0) = R_v \). Let \(x(k+1) = Fx(k) + Gv(k) \), with \(F \) stable. Then \(x(k) \) is a stationary stochastic process, with

\[
rx(\tau) = Ex(k+\tau)x^T(k) = F^\tau \Pi_x, \quad \text{where} \quad \Pi_x = F\Pi_x F^T + GR_v G^T.
\]

\(\Rightarrow rx(0) = \Pi_x. \) The eq. is called the discrete-time Lyapunov equation.

Continuous time: Let \(v(t) \) be white noise with \(Ev(t) = 0 \) and intensity \(R_v \). Let \(\dot{x}(t) = Ax(t) + Bv(t) \), with \(A \) stable. Then \(x(t) \) is a stationary stochastic process, with

\[
Ex(t)x^T(t) = \Pi_x, \quad \text{where} \quad A\Pi_x + \Pi_x A^T + BR_v B^T = 0.
\]

The equation is called the continuous-time Lyapunov equation.
Cross-covariance and cross-spectrum

Consider two stationary stochastic processes, \(x(t)\) and \(y(t)\), with \(Ex(t) = Ey(t) = 0\).

Cross-covariance: \(r_{xy}(\tau) \triangleq Ex(t + \tau)y^T(t)\)

Cross-spectrum:

- **Discrete time:** \(\Phi_{xy}(\omega) \triangleq \sum_{\tau=-\infty}^{\infty} r_{xy}(\tau)e^{-i\omega\tau}\)

- **Continuous time:** \(\Phi_{xy}(\omega) \triangleq \int_{-\infty}^{\infty} r_{xy}(\tau)e^{-i\omega\tau} d\tau\)

\(x(t)\) and \(y(t)\) independent \(\Rightarrow r_{xy}(\tau) \equiv 0\) and \(\Phi_{xy}(\omega) \equiv 0\).

Discrete time: \(y(k) = G(q)u(k) \Rightarrow \Phi_{yu}(\omega) = G(e^{i\omega})\Phi_u(\omega)\)

Continuous time: \(y(t) = G(p)u(t) \Rightarrow \Phi_{yu}(\omega) = G(i\omega)\Phi_u(\omega)\)
Let v and ϵ be white noise of zero mean and $\Phi_v(\omega) = R_v$, $\Phi_\epsilon(\omega) = R_\epsilon$ and $\Phi_{v\epsilon}(\omega) = 0$.

$$v \rightarrow G_w \rightarrow w \underset{\Sigma}{\rightarrow} y \Rightarrow \epsilon \rightarrow G_\epsilon \rightarrow y$$

Then $\Phi_y(\omega) = |G_w|^2 R_v + R_\epsilon$ is a rational function.

By spectral factorization we get $\Phi_y(\omega) = |G_\epsilon|^2$ for some stable, minimum phase, rational $G_\epsilon \Rightarrow$ we can compute $\epsilon = G_\epsilon^{-1} y$ (since G_ϵ^{-1} is stable).
Full model: Incorporating the noise in the system model

u - input, z - controlled/performance variable, y - measured output,

w - system/process noise, n - measurement noise,

v_1 - white process noise, v_2 - white measurement noise.