Basic Definitions

and

The Spectral Estimation Problem

Lecture 1

Informal Definition of Spectral Estimation

Given: A finite record of a signal.

Determine: The distribution of signal power over frequency.

\[\omega = \text{(angular) frequency in radians/(sampling interval)} \]
\[f = \frac{\omega}{2\pi} = \text{frequency in cycles/(sampling interval)} \]
Applications

Temporal Spectral Analysis

- Vibration monitoring and fault detection
- Hidden periodicity finding
- Speech processing and audio devices
- Medical diagnosis
- Seismology and ground movement study
- Control systems design
- Radar, Sonar

Spatial Spectral Analysis

- Source location using sensor arrays

Deterministic Signals

\[
\{y(t)\}_{t=-\infty}^{\infty} = \text{discrete-time deterministic data sequence}
\]

If:

\[
\sum_{t=-\infty}^{\infty} |y(t)|^2 < \infty
\]

Then:

\[
Y(\omega) = \sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t}
\]

exists and is called the **Discrete-Time Fourier Transform (DTFT)**
Energy Spectral Density

Parseval's Equality:

\[\sum_{t=-\infty}^{\infty} |y(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) d\omega \]

where

\[S(\omega) \triangleq |Y(\omega)|^2 \]

\[= \text{Energy Spectral Density} \]

We can write

\[S(\omega) = \sum_{k=-\infty}^{\infty} \rho(k) e^{-i\omega k} \]

where

\[\rho(k) = \sum_{t=-\infty}^{\infty} y(t)y^*(t-k) \]

Random Signals

Random Signal

probabilistic statements about
future variations

current observation time

t

Here:

\[\sum_{t=-\infty}^{\infty} |y(t)|^2 = \infty \]

But:

\[E \left\{ |y(t)|^2 \right\} < \infty \]

\[E \{ \cdot \} = \text{Expectation over the ensemble of realizations} \]

\[E \left\{ |y(t)|^2 \right\} = \text{Average power in } y(t) \]

PSD = (Average) power spectral density
First Definition of PSD

\[
\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}
\]

where \(r(k) \) is the **autocovariance sequence** (ACS)

\[
r(k) = E \{ y(t)y^*(t-k) \}
\]

\[
r(k) = r^*(-k), \quad r(0) \geq |r(k)|
\]

Note that

\[
r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega \quad \text{(Inverse DTFT)}
\]

Interpretation:

\[
r(0) = E \{ |y(t)|^2 \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega
\]

so

\[
\phi(\omega) d\omega = \text{infinitesimal signal power in the band } \omega \pm \frac{d\omega}{2}
\]

Second Definition of PSD

\[
\phi(\omega) = \lim_{N \to \infty} E \left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}
\]

Note that

\[
\phi(\omega) = \lim_{N \to \infty} E \left\{ \frac{1}{N} |Y_N(\omega)|^2 \right\}
\]

where

\[
Y_N(\omega) = \sum_{t=1}^{N} y(t) e^{-i\omega t}
\]

is the finite DTFT of \(\{ y(t) \} \).
Properties of the PSD

P1: $\phi(\omega) = \phi(\omega + 2\pi)$ for all ω.
Thus, we can restrict attention to
$$\omega \in [-\pi, \pi] \iff f \in [-1/2, 1/2]$$

P2: $\phi(\omega) \geq 0$

P3: If $y(t)$ is real,

Then: $\phi(\omega) = \phi(-\omega)$

Otherwise: $\phi(\omega) \neq \phi(-\omega)$

Transfer of PSD Through Linear Systems

System Function:
$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where $q^{-1} = \text{unit delay operator: } q^{-1}y(t) = y(t - 1)$

$$\begin{array}{ccc}
\mathbf{\Phi_e(\omega)} & \mathbf{H(q)} & \mathbf{\Phi_y(\omega)} \\
\mathbf{e(t)} & \mathbf{y(t)} & \mathbf{y(t)} = |H(\omega)|^2 \mathbf{\Phi_e(\omega)}
\end{array}$$

Then

$$y(t) = \sum_{k=0}^{\infty} h_k e(t - k)$$

$$H(\omega) = \sum_{k=0}^{\infty} h_k e^{-i\omega k}$$

$$\Phi_y(\omega) = |H(\omega)|^2 \Phi_e(\omega)$$
The Spectral Estimation Problem

The Problem:

From a sample \(\{ y(1), \ldots, y(N) \} \)

Find an estimate of \(\phi(\omega) \):
\[
\{ \hat{\phi}(\omega), \ \omega \in [-\pi, \pi] \}
\]

Two Main Approaches:

- **Nonparametric:**
 - Derived from the PSD definitions.

- **Parametric:**
 - Assumes a parameterized functional form of the PSD

Periodogram and Correlogram Methods

Lecture 2

Lecture notes to accompany *Introduction to Spectral Analysis* Slide L1–11 by P. Stoica and R. Moses, Prentice Hall, 1997

Lecture notes to accompany *Introduction to Spectral Analysis* Slide L2–1 by P. Stoica and R. Moses, Prentice Hall, 1997
Periodogram

Recall 2nd definition of $\phi(\omega)$:

$$
\phi(\omega) = \lim_{N \to \infty} E \left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^{2} \right\}
$$

Given: $\{y(t)\}_{t=1}^{N}$

Drop “$\lim_{N \to \infty}$” and “$E \{ \cdot \}$” to get

$$
\hat{\phi}_{p}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^{2}
$$

• Natural estimator

• Used by Schuster (~1900) to determine “hidden periodicities” (hence the name).

Correlogram

Recall 1st definition of $\phi(\omega)$:

$$
\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}
$$

Truncate the “\sum” and replace “$r(k)$” by “$\tilde{r}(k)$”:

$$
\hat{\phi}_{c}(\omega) = \sum_{k=-(N-1)}^{N-1} \tilde{r}(k) e^{-i\omega k}
$$
Covariance Estimators
(or Sample Covariances)

Standard unbiased estimate:
\[\hat{r}(k) = \frac{1}{N-k} \sum_{t=k+1}^{N} y(t)y^*(t-k), \quad k \geq 0 \]

Standard biased estimate:
\[\hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} y(t)y^*(t-k), \quad k \geq 0 \]

For both estimators:
\[\hat{r}(k) = \hat{r}^*(-k), \quad k < 0 \]

Relationship Between \(\hat{\phi}_p(\omega) \) and \(\hat{\phi}_c(\omega) \)

If: the biased ACS estimator \(\hat{r}(k) \) is used in \(\hat{\phi}_c(\omega) \),

Then:
\[
\hat{\phi}_p(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right|^2 = \sum_{k=-1}^{N-1} \hat{r}(k)e^{-i\omega k} = \hat{\phi}_c(\omega)
\]

Consequence:
Both \(\hat{\phi}_p(\omega) \) and \(\hat{\phi}_c(\omega) \) can be analyzed simultaneously.
Statistical Performance of $\hat{\phi}_p(\omega)$ and $\hat{\phi}_c(\omega)$

Summary:

- Both are asymptotically (for large N) unbiased:
 \[E \{ \hat{\phi}_p(\omega) \} \to \phi(\omega) \text{ as } N \to \infty \]

- Both have “large” variance, even for large N.

Thus, $\hat{\phi}_p(\omega)$ and $\hat{\phi}_c(\omega)$ have **poor performance**.

Intuitive explanation:

- $\hat{r}(k) - r(k)$ may be large for large $|k|$

- Even if the errors \(\{ \hat{r}(k) - r(k) \} \) are small, there are “so many” that when summed in $[\hat{\phi}_p(\omega) - \phi(\omega)]$, the PSD error is large.

Bias Analysis of the Periodogram

\[
E \{ \hat{\phi}_p(\omega) \} = E \{ \hat{\phi}_c(\omega) \} = \sum_{k=-(N-1)}^{N-1} E \{ \hat{r}(k) \} e^{-i\omega k}
\]

\[
= \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) r(k) e^{-i\omega k}
\]

\[
= \sum_{k=-\infty}^{\infty} w_B(k) r(k) e^{-i\omega k}
\]

\[
w_B(k) = \begin{cases}
(1 - \frac{|k|}{N}), & |k| \leq N - 1 \\
0, & |k| \geq N
\end{cases}
\]

Thus,

\[
E \{ \hat{\phi}_p(\omega) \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\zeta) W_B(\omega - \zeta) \, d\zeta
\]

Ideally: $W_B(\omega) = \text{Dirac impulse } \delta(\omega)$.
Bartlett Window $W_B(\omega)$

$$W_B(\omega) = \frac{1}{N} \left[\frac{\sin(\omega N/2)}{\sin(\omega/2)} \right]^2$$

$W_B(\omega)/W_B(0)$, for $N = 25$

Main lobe 3dB width $\sim 1/N$.

For “small” N, $W_B(\omega)$ may differ quite a bit from $\delta(\omega)$.

Smearing and Leakage

Main Lobe Width: *smearing or smoothing*

Details in $\phi(\omega)$ separated in f by less than $1/N$ are not resolvable.

Thus: Periodogram resolution limit $= 1/N$.

Sidelobe Level: *leakage*

Thus: $\hat{\phi}(\omega) \equiv W_B(\omega)$
Periodogram Bias Properties

Summary of Periodogram Bias Properties:

- For “small” N, severe bias
- As $N \to \infty$, $W_B(\omega) \to \delta(\omega)$, so $\hat{\phi}(\omega)$ is asymptotically unbiased.

Periodogram Variance

As $N \to \infty$

\[
E \left\{ \left[\hat{\phi}_p(\omega_1) - \phi(\omega_1) \right] \left[\hat{\phi}_p(\omega_2) - \phi(\omega_2) \right] \right\} = \begin{cases}
\phi^2(\omega_1), & \omega_1 = \omega_2 \\
0, & \omega_1 \neq \omega_2
\end{cases}
\]

- Inconsistent estimate
- Erratic behavior

Resolvability properties depend on both bias and variance.
Discrete Fourier Transform (DFT)

Finite DTFT: $Y_N(\omega) = \sum_{t=1}^{N} y(t)e^{-i\omega t}$

Let $\omega = \frac{2\pi}{N}k$ and $W = e^{-i\frac{2\pi}{N}}$.

Then $Y_N(\frac{2\pi}{N}k)$ is the Discrete Fourier Transform (DFT):

$Y(k) = \sum_{t=1}^{N} y(t)W^{tk}$, \hspace{1cm} k = 0, \ldots, N - 1$

Direct computation of $\{Y(k)\}_{k=0}^{N-1}$ from $\{y(t)\}_{t=1}^{N}$: $O(N^2)$ flops

Radix–2 Fast Fourier Transform (FFT)

Assume: $N = 2^m$

$Y(k) = \sum_{t=1}^{N/2} y(t)W^{tk} + \sum_{t=N/2+1}^{N} y(t)W^{tk}$

$= \sum_{t=1}^{N/2} [y(t) + y(t + N/2)W^{Nk/2}]W^{tk}$

with $W^{Nk/2} = \begin{cases} 1, & \text{for even } k \\ -1, & \text{for odd } k \end{cases}$

Let $\tilde{N} = N/2$ and $\tilde{W} = W^2 = e^{-i2\pi/\tilde{N}}$.

For $k = 0, 2, 4, \ldots, N - 2 \triangleq 2p$:

$Y(2p) = \sum_{t=1}^{\tilde{N}} [y(t) + y(t + \tilde{N})]\tilde{W}^{tp}$

For $k = 1, 3, 5, \ldots, N - 1 = 2p + 1$:

$Y(2p + 1) = \sum_{t=1}^{\tilde{N}} \{[y(t) - y(t + \tilde{N})]W^t\}\tilde{W}^{tp}$

Each is a $\tilde{N} = N/2$-point DFT computation.
FFT Computation Count

Let $c_k =$ number of flops for $N = 2^k$ point FFT.

Then

$$c_k = \frac{2^k}{2} + 2c_{k-1}$$

$$\Rightarrow c_k = \frac{k2^k}{2}$$

Thus,

$$c_k = \frac{1}{2}N \log_2 N$$

Zero Padding

Append the given data by zeros prior to computing DFT (or FFT):

$$\{y(1), \ldots, y(N), 0, \ldots 0\}$$

Goals:

- Apply a radix-2 FFT (so $N =$ power of 2)
- Finer sampling of $\hat{\phi}(\omega)$:

$$\left\{ \frac{2\pi}{N} \right\}_{k=0}^{N-1} \Rightarrow \left\{ \frac{2\pi}{\overline{N}} \right\}_{k=0}^{\overline{N}-1}$$

- continuous curve
- sampled, $N=8$
Blackman-Tukey Method

Basic Idea: Weighted correlogram, with small weight applied to covariances \(\hat{r}(k) \) with “large” \(|k|\).

\[
\hat{\phi}_{BT}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k) \hat{r}(k) e^{-i\omega k}
\]

\{w(k)\} = \text{Lag Window}

Improved Periodogram-Based Methods

Lecture 3
Blackman-Tukey Method, con't

\[
\hat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta) W(\omega - \zeta) d\zeta
\]

\[
W(\omega) = \text{DTFT}\{w(k)\} = \text{Spectral Window}
\]

Conclusion: \(\hat{\phi}_{BT}(\omega)\) = “locally” smoothed periodogram

Effect:

- Variance decreases substantially
- Bias increases slightly

By proper choice of \(M\):

\[
\text{MSE} = \text{var} + \text{bias}^2 \to 0 \text{ as } N \to \infty
\]

Window Design Considerations

Nonnegativeness:

\[
\hat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\zeta) W(\omega - \zeta) d\zeta
\]

If \(W(\omega) \geq 0 \Leftrightarrow w(k)\) is a psd sequence

Then: \(\hat{\phi}_{BT}(\omega) \geq 0\) (which is desirable)

Time-Bandwidth Product

\[
N_e = \frac{\sum_{k=-\frac{M-1}{2}}^{\frac{M-1}{2}} w(k)}{w(0)} = \text{equiv time width}
\]

\[
\beta_e = \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = \text{equiv bandwidth}
\]

\[
N_e \beta_e = 1
\]
Window Design, con't

- $\beta_e = 1/N_e = O(1/M)$ is the BT resolution threshold.

- As M increases, bias decreases and variance increases.

 \Rightarrow Choose M as a tradeoff between variance and bias.

- Once M is given, N_e (and hence β_e) is essentially fixed.

 \Rightarrow Choose window shape to compromise between smearing (main lobe width) and leakage (sidelobe level).

The energy in the main lobe and in the sidelobes cannot be reduced simultaneously, once M is given.
Bartlett Method

Basic Idea:

Mathematically:

\[y_j(t) = y((j-1)M + t) \quad t = 1, \ldots, M \]

\[\hat{\phi}_j(\omega) = \frac{1}{M} \left| \sum_{t=1}^{M} y_j(t) e^{-i\omega t} \right|^2 \]

\[\hat{\phi}_B(\omega) = \frac{1}{L} \sum_{j=1}^{L} \hat{\phi}_j(\omega) \]

Comparison of Bartlett and Blackman-Tukey Estimates

\[\hat{\phi}_B(\omega) = \frac{1}{L} \sum_{j=1}^{L} \left\{ \sum_{k=-\infty}^{M-1} \hat{r}_j(k)e^{-i\omega k} \right\} \]

\[\approx \sum_{k=-\infty}^{M-1} \hat{r}(k)e^{-i\omega k} \]

Thus:

\[\hat{\phi}_B(\omega) \approx \hat{\phi}_{BT}(\omega) \text{ with a rectangular lag window } w_R(k) \]

Since \(\hat{\phi}_B(\omega) \) implicitly uses \(\{w_R(k)\} \), the Bartlett method has

- High resolution (little smearing)
- Large leakage and relatively large variance
Welch Method

Similar to Bartlett method, but

- allow overlap of subsequences (gives more subsequences, and thus “better” averaging)

- use data window for each periodogram; gives mainlobe-sidelobe tradeoff capability

Let $S = \#$ of subsequences of length M. (Overlapping means $S > \lfloor N/M \rfloor \Rightarrow \text{“better averaging”}$.)

Additional flexibility:

The data in each subsequence are weighted by a *temporal* window

Welch is approximately equal to $\hat{\phi}_{BT}(\omega)$ with a non-rectangular lag window.

Daniell Method

By a previous result, for $N \gg 1$,

$$\{\hat{\phi}_p(\omega_j)\} \text{ are (nearly) uncorrelated random variables for}$$

$$\left\{ \omega_j = \frac{2\pi j}{N} \right\}_{j=0}^{N-1}$$

Idea: “Local averaging” of $(2J + 1)$ samples in the frequency domain should reduce the variance by about $(2J + 1)$.

$$\hat{\phi}_D(\omega_k) = \frac{1}{2J + 1} \sum_{j=k-J}^{k+J} \hat{\phi}_p(\omega_j)$$
As \(J \) increases:

- Bias increases (more smoothing)
- Variance decreases (more averaging)

Let \(\beta = 2J/N \). Then, for \(N \gg 1 \),

\[
\tilde{\phi}_D(\omega) \simeq \frac{1}{2\pi \beta} \int_{-\pi}^{\pi} \tilde{\phi}_p(\omega) d\omega
\]

Hence: \(\tilde{\phi}_D(\omega) \simeq \tilde{\phi}_{BT}(\omega) \) with a rectangular spectral window.

Summary of Periodogram Methods

- **Unwindowed periodogram**
 - reasonable bias
 - unacceptable variance

- **Modified periodograms**
 - Attempt to reduce the variance at the expense of (slightly) increasing the bias.

- **BT periodogram**
 - Local smoothing/averaging of \(\tilde{\phi}_p(\omega) \) by a suitably selected spectral window.
 - Implemented by truncating and weighting \(\tilde{\tau}(k) \) using a lag window in \(\tilde{\phi}_c(\omega) \)

- **Bartlett, Welch periodograms**
 - Approximate interpretation: \(\tilde{\phi}_{BT}(\omega) \) with a suitable lag window (rectangular for Bartlett; more general for Welch).
 - Implemented by averaging subsample periodograms.

- **Daniell Periodogram**
 - Approximate interpretation: \(\tilde{\phi}_{BT}(\omega) \) with a rectangular spectral window.
 - Implemented by local averaging of periodogram values.
Parametric Methods for Rational Spectra

Lecture 4

Basic Idea of Parametric Spectral Estimation

Observed Data \[\hat{\theta} \]

Assumed functional form of \(\phi(\omega, \theta) \)

Estimate parameters in \(\phi(\omega, \theta) \)

Estimate PSD

\[\hat{\phi}(\omega) = \phi(\omega, \hat{\theta}) \]

possibly revise assumption on \(\phi(\omega) \)

Rational Spectra

\[
\phi(\omega) = \frac{\sum_{|k| \leq m} \gamma_k e^{-i\omega k}}{\sum_{|k| \leq n} \rho_k e^{-i\omega k}}
\]

\(\phi(\omega) \) is a rational function in \(e^{-i\omega} \).

By Weierstrass theorem, \(\phi(\omega) \) can approximate arbitrarily well any continuous PSD, provided \(m \) and \(n \) are chosen sufficiently large.

Note, however:

- choice of \(m \) and \(n \) is not simple
- some PSDs are not continuous
By Spectral Factorization theorem, a rational $\phi(\omega)$ can be factored as

$$\phi(\omega) = \left| \frac{B(\omega)}{A(\omega)} \right|^2 \sigma^2$$

$$A(z) = 1 + a_1 z^{-1} + \cdots + a_n z^{-n}$$

$$B(z) = 1 + b_1 z^{-1} + \cdots + b_m z^{-m}$$

and, e.g., $A(\omega) = A(z)|_{z=e^{i\omega}}$

Signal Modeling Interpretation:

$$e(t) \xrightarrow{\phi_e(\omega) = \sigma^2} \frac{B(q)}{A(q)} \xrightarrow{\phi_y(\omega) = \left| \frac{B(\omega)}{A(\omega)} \right|^2 \sigma^2} y(t)$$

white noise \hspace{1cm} filtered white noise

ARMA: $A(q)y(t) = B(q)e(t)$

AR: $A(q)y(t) = e(t)$

MA: $y(t) = B(q)e(t)$
AR Signals: Yule-Walker Equations

AR: \(m = 0 \).

Writing covariance equation in matrix form for \(k = 1 \ldots n \):

\[
\begin{bmatrix}
 r(0) & r(-1) & \cdots & r(-n) \\
 r(1) & r(0) & & \\
 \vdots & \ddots & \ddots & \\
 r(n) & \cdots & r(-1) & r(0)
\end{bmatrix}
\begin{bmatrix}
 1 \\
 a_1 \\
 \vdots \\
 a_n
\end{bmatrix}
=
\begin{bmatrix}
 \sigma^2 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]

\[R \begin{bmatrix} 1 \\ \theta \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \end{bmatrix} \]

These are the Yule–Walker (YW) Equations.

AR Spectral Estimation: YW Method

Yule-Walker Method:

Replace \(r(k) \) by \(\hat{r}(k) \) and solve for \(\{\hat{a}_i\} \) and \(\hat{\sigma}^2 \):

\[
\begin{bmatrix}
 \hat{r}(0) & \hat{r}(-1) & \cdots & \hat{r}(-n) \\
 \hat{r}(1) & \hat{r}(0) & & \\
 \vdots & \ddots & \ddots & \\
 \hat{r}(n) & \cdots & \hat{r}(-1) & \hat{r}(0)
\end{bmatrix}
\begin{bmatrix}
 1 \\
 \hat{a}_1 \\
 \vdots \\
 \hat{a}_n
\end{bmatrix}
=
\begin{bmatrix}
 \hat{\sigma}^2 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]

Then the PSD estimate is

\[
\hat{\phi}(\omega) = \frac{\hat{\sigma}^2}{|\hat{A}(\omega)|^2}
\]
Least Squares Method:

\[e(t) = y(t) + \sum_{i=1}^{n} a_i y(t - i) = y(t) + \varphi^T(t)\theta \]

\[\triangleq y(t) + \hat{y}(t) \]

where \(\varphi(t) = [y(t - 1), \ldots, y(t - n)]^T \).

Find \(\theta = [a_1 \ldots a_n]^T \) to minimize

\[f(\theta) = \sum_{t=n+1}^{N} |e(t)|^2 \]

This gives \(\hat{\theta} = -(Y^*Y)^{-1}(Y^*y) \) where

\[
\begin{bmatrix}
y(n + 1) \\
y(n + 2) \\
\vdots \\
y(N)
\end{bmatrix}
\begin{bmatrix}
y(n) \\
y(n + 1) \\
\vdots \\
y(N - n)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\rho_0 & \rho_1 & \cdots & \rho_n \\
\rho_1 & \rho_0 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \rho_1 \\
\rho_n & \cdots & \rho_1 & \rho_0
\end{bmatrix}
\begin{bmatrix}
1 \\
\theta_n \\
\vdots \\
R_{n+1}
\end{bmatrix}
\]

\[\rho_k = \text{either } r(k) \text{ or } \hat{r}(k). \]

Directed Solution:

- For one given value of \(n \): \(O(n^3) \) flops

- For \(k = 1, \ldots, n \): \(O(n^4) \) flops

Levinson–Durbin Algorithm:

Exploits the Toeplitz form of \(R_{n+1} \) to obtain the solutions for \(k = 1, \ldots, n \) in \(O(n^2) \) flops!
Levinson-Durbin Alg, con’t

Relevant Properties of R:

- $Rx = y \iff R\tilde{x} = \tilde{y}$, where $\tilde{x} = [x_n^* \ldots x_1^*]^T$

- Nested structure

$$R_{n+2} = \begin{bmatrix} R_{n+1} & \tilde{\rho}_{n+1}^* \\ \rho_{n+1} & \tilde{\rho}_n^* \\ \rho_{n+1} & \tilde{\rho}_n \\ \rho_0 & \rho_0 \end{bmatrix}, \quad \tilde{\rho}_n = \begin{bmatrix} \rho_n^* \\ \rho_1^* \end{bmatrix}$$

Thus,

$$R_{n+2} \begin{bmatrix} 1 \\ \theta_n \\ 0 \end{bmatrix} = \begin{bmatrix} R_{n+1} & \tilde{\rho}_{n+1}^* \\ \rho_{n+1} & \tilde{\rho}_n^* \\ \rho_{n+1} & \tilde{\rho}_n \\ \rho_0 & \rho_0 \end{bmatrix} \begin{bmatrix} 1 \\ \theta_n \\ 0 \end{bmatrix} = \begin{bmatrix} \sigma_n^2 \\ 0 \\ 0 \end{bmatrix}$$

where $\alpha_n = \rho_{n+1} + \tilde{\rho}_n^* \theta_n$

$$R_{n+2} \begin{bmatrix} 1 \\ \theta_n \\ 0 \end{bmatrix} = \begin{bmatrix} \sigma_n^2 \\ 0 \\ 0 \end{bmatrix}, \quad R_{n+2} \begin{bmatrix} 0 \\ \tilde{\theta}_n \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_n^2 \\ 0 \\ 0 \end{bmatrix}$$

Combining these gives:

$$R_{n+2} \left\{ \begin{bmatrix} 1 \\ \theta_n \\ 0 \\ \tilde{\theta}_n \end{bmatrix} + k_n \begin{bmatrix} 0 \\ \tilde{\theta}_n \\ 1 \end{bmatrix} \right\} = \begin{bmatrix} \sigma_n^2 + k_n \alpha_n^* \\ 0 \\ \alpha_n + k_n \sigma_n^2 \end{bmatrix} = \begin{bmatrix} \sigma_{n+1}^2 \\ 0 \\ 0 \end{bmatrix}$$

Thus,

$$k_n = -\alpha_n / \sigma_n^2 \Rightarrow$$

$$\theta_{n+1} = \begin{bmatrix} \theta_n \\ 0 \end{bmatrix} + k_n \begin{bmatrix} \tilde{\theta}_n \\ 1 \end{bmatrix}$$

$$\sigma_{n+1}^2 = \sigma_n^2 + k_n \alpha_n^* = \sigma_n^2(1 - |k_n|^2)$$

Computation count:

$\sim 2k$ flops for the step $k \rightarrow k + 1$

$\Rightarrow \sim n^2$ flops to determine $\{\sigma_k^2, \theta_k\}_{k=1}^n$

This is $O(n^2)$ times faster than the direct solution.
MA: $n = 0$

\[
y(t) = B(q)e(t) = e(t) + b_1e(t-1) + \cdots + b_me(t-m)
\]

Thus, \(r(k) = 0 \) for \(|k| > m \)

and

\[
\phi(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^{m} r(k) e^{-i\omega k}
\]

MA Spectrum Estimation

Two main ways to Estimate \(\phi(\omega) \):

1. Estimate \(\{b_k\} \) and \(\sigma^2 \) and insert them in

\[
\phi(\omega) = |B(\omega)|^2 \sigma^2
\]

 - nonlinear estimation problem
 - \(\hat{\phi}(\omega) \) is guaranteed to be \(\geq 0 \)

2. Insert sample covariances \(\{\hat{r}(k)\} \) in:

\[
\phi(\omega) = \sum_{k=-m}^{m} r(k) e^{-i\omega k}
\]

 - This is \(\hat{\phi}_{BT}(\omega) \) with a rectangular lag window of length \(2m + 1 \).
 - \(\hat{\phi}(\omega) \) is not guaranteed to be \(\geq 0 \)

Both methods are special cases of ARMA methods described below, with AR model order \(n = 0 \).
ARMA Signals

ARMA models can represent spectra with both peaks (AR part) and valleys (MA part).

\[A(q)y(t) = B(q)e(t) \]

\[\phi(\omega) = \sigma^2 \left| \frac{B(\omega)}{A(\omega)} \right|^2 = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{|A(\omega)|^2} \]

where

\[\gamma_k = E \{ [B(q)e(t)][B(q)e(t-k)]^* \} \]

\[= E \{ [A(q)y(t)][A(q)y(t-k)]^* \} \]

\[= \sum_{j=0}^{n} \sum_{p=0}^{n} a_j a_p^* r(k+p-j) \]

ARMA Spectrum Estimation

Two Methods:

1. Estimate \(\{ a_i, b_j, \sigma^2 \} \) in \(\phi(\omega) = \sigma^2 \left| \frac{B(\omega)}{A(\omega)} \right|^2 \)

 - nonlinear estimation problem; can use an approximate linear two-stage least squares method

 - \(\hat{\phi}(\omega) \) is guaranteed to be \(\geq 0 \)

2. Estimate \(\{ a_i, r(k) \} \) in \(\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{|A(\omega)|^2} \)

 - linear estimation problem (the Modified Yule-Walker method).

 - \(\hat{\phi}(\omega) \) is not guaranteed to be \(\geq 0 \)
Two-Stage Least-Squares Method

Assumption: The ARMA model is invertible:

\[
e(t) = \frac{A(q)}{B(q)} y(t)
\]

\[
e(t) \approx y(t) + \alpha_1 y(t - 1) + \alpha_2 y(t - 2) + \cdots
\]

\[
\text{AR}(\infty) \text{ with } |\alpha_k| \to 0 \text{ as } k \to \infty
\]

Step 1: Approximate, for some large \(K\)

\[
e(t) \approx y(t) + \alpha_1 y(t - 1) + \cdots + \alpha_K y(t - K)
\]

1a) Estimate the coefficients \(\{\alpha_k\}_{k=1}^K\) by using AR modelling techniques.

1b) Estimate the noise sequence

\[
\hat{\epsilon}(t) = y(t) + \hat{\alpha}_1 y(t - 1) + \cdots + \hat{\alpha}_K y(t - K)
\]

and its variance

\[
\hat{\sigma}^2 = \frac{1}{N - K} \sum_{t=K+1}^{N} |\hat{\epsilon}(t)|^2
\]

Two-Stage Least-Squares Method, con't

Step 2: Replace \(\{e(t)\}\) by \(\hat{\epsilon}(t)\) in the ARMA equation,

\[
A(q) y(t) \approx B(q) \hat{\epsilon}(t)
\]

and obtain estimates of \(\{a_i, b_j\}\) by applying least squares techniques.

Note that the \(a_i\) and \(b_j\) coefficients enter linearly in the above equation:

\[
y(t) - \hat{\epsilon}(t) \approx [-y(t-1), \ldots, -y(t-n),
\hat{\epsilon}(t-1), \ldots \hat{\epsilon}(t-m)] \theta
\]

\[
\theta = [a_1 \ldots a_n b_1 \ldots b_m]^T
\]
Modified Yule-Walker Method

ARMA Covariance Equation:

\[r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k > m \]

In matrix form for \(k = m + 1, \ldots, m + M \)

\[
\begin{bmatrix}
 r(m) & \ldots & r(m-n+1) \\
 r(m+1) & \ddots & \vdots \\
 r(m+M-1) & \ldots & r(m+n+M) \\
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 \vdots \\
 a_n \\
\end{bmatrix}
= -
\begin{bmatrix}
 r(m+1) \\
 r(m+2) \\
 \vdots \\
 r(m+M) \\
\end{bmatrix}
\]

Replace \{r(k)\} by \{\hat{r}(k)\} and solve for \{a_i\}.

If \(M = n \), fast Levinson-type algorithms exist for obtaining \{\hat{a}_i\}.

If \(M > n \) overdetermined YW system of equations; least squares solution for \{\hat{a}_i\}.

Note: For narrowband ARMA signals, the accuracy of \{\hat{a}_i\} is often better for \(M > n \)

Summary of Parametric Methods for Rational Spectra

<table>
<thead>
<tr>
<th>Method</th>
<th>Use for</th>
<th>Guarantee (\hat{a}(\cdot) \geq 0)</th>
<th>Accuracy</th>
<th>Computational Burden</th>
<th>Guarantee (\hat{a}(\cdot) \geq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR: YW or LS</td>
<td>Spectra with (narrow) peaks but no valley</td>
<td>Yes</td>
<td>low-moderate</td>
<td>low</td>
<td>No</td>
</tr>
<tr>
<td>MA: BT</td>
<td>Broadband spectra possibly with valleys but no peaks</td>
<td>No</td>
<td>low-moderate</td>
<td>low</td>
<td>No</td>
</tr>
<tr>
<td>ARMA: MYW</td>
<td>Spectra with both peaks and (not too deep) valleys</td>
<td>No</td>
<td>medium</td>
<td>medium-high</td>
<td>Yes</td>
</tr>
<tr>
<td>ARMA: 2-Stage LS</td>
<td>As above</td>
<td>Yes</td>
<td>medium-high</td>
<td>medium-high</td>
<td>Yes</td>
</tr>
</tbody>
</table>

by P. Stoica and R. Moses, Prentice Hall, 1997
Many applications have signals with (near) sinusoidal components. Examples:

- communications
- radar, sonar
- geophysical seismology

ARMA model is a poor approximation

Better approximation by Discrete/Line Spectrum Models

An “Ideal” line spectrum
Line Spectral Signal Model

Signal Model: Sinusoidal components of frequencies \(\{ \omega_k \} \) and powers \(\{ \alpha_k^2 \} \), superimposed in white noise of power \(\sigma^2 \).

\[
y(t) = x(t) + e(t) \quad t = 1, 2, \ldots
\]

\[
x(t) = \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \phi_k)} x_k(t)
\]

Assumptions:

A1: \(\alpha_k > 0 \quad \omega_k \in [\pi, \pi] \)
 (prevents model ambiguities)

A2: \(\{ \varphi_k \} = \) independent rv's, uniformly distributed on \([\pi, \pi]\)
 (realistic and mathematically convenient)

A3: \(e(t) = \) circular white noise with variance \(\sigma^2 \)

\[
E \{ e(t)e^*(s) \} = \sigma^2 \delta_{t,s} \quad E \{ e(t)e(s) \} = 0
\]
 (can be achieved by “slow” sampling)

Covariance Function and PSD

Note that:

- \(E \{ e^{i\varphi_p} e^{-i\varphi_j} \} = 1 \), for \(p = j \)

- \(E \{ e^{i\varphi_p} e^{-i\varphi_j} \} = E \{ e^{i\varphi_p} \} E \{ e^{-i\varphi_j} \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\varphi} d\varphi \) = 0, for \(p \neq j \)

Hence,

\[
E \{ x_p(t)x_j^*(t - k) \} = \alpha_p^2 e^{i\omega_p k} \delta_{p,j}
\]

\[
r(k) = E \{ y(t)y^*(t - k) \} = \sum_{p=1}^{n} \alpha_p^2 e^{i\omega_p k} + \sigma^2 \delta_{k,0}
\]

and

\[
\phi(\omega) = 2\pi \sum_{p=1}^{n} \alpha_p^2 \delta(\omega - \omega_p) + \sigma^2
\]
Parameter Estimation

Estimate either:

- \(\{\omega_k, \alpha_k, \varphi_k\}_{k=1}^{n}, \sigma^2 \) (Signal Model)
- \(\{\omega_k, \alpha_k^2\}_{k=1}^{n}, \sigma^2 \) (PSD Model)

Major Estimation Problem: \(\{\hat{\omega}_k\} \)

Once \(\{\hat{\omega}_k\} \) are determined:

- \(\{\hat{\alpha}_k^2\} \) can be obtained by a least squares method from
 \[
 \hat{r}(k) = \sum_{p=1}^{n} \alpha_p^2 e^{i\hat{\varphi}_p} + \text{residuals}
 \]

OR:

- Both \(\{\hat{\alpha}_k\} \) and \(\{\hat{\varphi}_k\} \) can be derived by a least
 squares method from
 \[
 y(t) = \sum_{k=1}^{n} \beta_k e^{i\hat{\omega}_k t} + \text{residuals}
 \]
 with \(\beta_k = \alpha_k e^{i\hat{\varphi}_k} \).

Nonlinear Least Squares (NLS) Method

Let:

\[
\begin{align*}
\beta_k &= \alpha_k e^{i\varphi_k} \\
\beta &= [\beta_1 \ldots \beta_n]^T \\
Y &= [y(1) \ldots y(N)]^T \\
B &= \begin{bmatrix}
e^{i\omega_1} & \ldots & e^{i\omega_n} \\
\vdots & \ddots & \vdots \\
e^{iN\omega_1} & \ldots & e^{iN\omega_n}
\end{bmatrix}
\end{align*}
\]
Nonlinear Least Squares (NLS) Method, con’t

Then:

\[
F = (Y - B\beta)^* (Y - B\beta) = \|Y - B\beta\|^2
\]

\[
= [\beta - (B^*B)^{-1}B^*Y]*[B^*B]
\]

\[
[\beta - (B^*B)^{-1}B^*Y] + Y^*Y - Y^*B(B^*B)^{-1}B^*Y
\]

This gives:

\[
\hat{\beta} = (B^*B)^{-1}B^*Y \bigg|_{\omega = \hat{\omega}}
\]

and

\[
\hat{\omega} = \arg \max_{\omega} Y^*B(B^*B)^{-1}B^*Y
\]

NLS Properties

Excellent Accuracy:

\[
\text{var} (\hat{\omega}_k) = \frac{6\sigma^2}{N^3\alpha_k^2} \quad (\text{for } N \gg 1)
\]

Example: \(N = 300\)

\[
\text{SNR}_k = \frac{\alpha_k^2}{\sigma^2} = 30 \text{ dB}
\]

Then \(\sqrt{\text{var}(\hat{\omega}_k)} \sim 10^{-5}\).

Difficult Implementation:

The NLS cost function \(F\) is multimodal; it is difficult to avoid convergence to local minima.
Unwindowed Periodogram as an Approximate NLS Method

For a single (complex) sinusoid, the maximum of the unwindowed periodogram is the NLS frequency estimate:

Assume: \(n = 1 \)

Then: \(B^* B = N \)

\[
B^* Y = \sum_{t=1}^{N} y(t)e^{-i\omega t} = Y(\omega) \quad \text{(finite DTFT)}
\]

\[
Y^* B (B^* B)^{-1} B^* Y = \frac{1}{N} |Y(\omega)|^2 = \hat{\phi}_p(\omega) = \text{(Unwindowed Periodogram)}
\]

So, with no approximation,

\[
\hat{\omega} = \arg \max_\omega \hat{\phi}_p(\omega)
\]

Unwindowed Periodogram as an Approximate NLS Method, con't

Assume: \(n > 1 \)

Then:

\[
\{\hat{\omega}_k\}_{k=1}^n \simeq \text{the locations of the } n \text{ largest peaks of } \hat{\phi}_p(\omega)
\]

provided that

\[
\inf |\omega_k - \omega_p| > 2\pi/N
\]

which is the periodogram resolution limit.

If better resolution desired then use a High/Super Resolution method.
High-Order Yule-Walker Method

Recall:

\[y(t) = x(t) + e(t) = \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} + e(t) \]

“Degenerate” ARMA equation for \(y(t) \):

\[
(1 - e^{i\omega_k q^{-1}}) x_k(t) = \alpha_k \left\{ e^{i\omega_k t + \varphi_k} - e^{i\omega_k} e^{i[\omega_k(t-1) + \varphi_k]} \right\} = 0
\]

Let

\[
B(q) = 1 + \sum_{k=1}^{L} b_k q^{-k} \triangleq A(q) \bar{A}(q)
\]

\[
A(q) = (1 - e^{i\omega_1 q^{-1}}) \cdots (1 - e^{i\omega_n q^{-1}})
\]

\[
\bar{A}(q) = \text{arbitrary}
\]

Then \(B(q)x(t) \equiv 0 \Rightarrow \)

\[
B(q)y(t) = B(q)e(t)
\]

High-Order Yule-Walker Method, con't

Estimation Procedure:

- Estimate \(\{\hat{\beta}_i\}_{i=1}^{L} \) using an ARMA MYW technique

- Roots of \(\hat{B}(q) \) give \(\{\hat{\omega}_k\}_{k=1}^{n} \), along with \(L - n \) “spurious” roots.

Lecture notes to accompany Introduction to Spectral Analysis
by P. Stoica and R. Moses, Prentice Hall, 1997
High-Order and Overdetermined YW Equations

ARMA covariance:

\[r(k) + \sum_{i=1}^{L} b_i r(k - i) = 0, \quad k > L \]

In matrix form for \(k = L + 1, \ldots, L + M \)

\[
\begin{bmatrix}
 r(L) & \ldots & r(1) \\
 r(L+1) & \ldots & r(2) \\
 \vdots & \ddots & \vdots \\
 r(L+M-1) & \ldots & r(M)
\end{bmatrix}
\begin{bmatrix}
 \triangleq \Omega
\end{bmatrix}
= -
\begin{bmatrix}
 r(L+1) \\
 r(L+2) \\
 \vdots \\
 r(L+M)
\end{bmatrix}
\begin{bmatrix}
 \triangleq \rho
\end{bmatrix}
\]

This is a high-order (if \(L > n \)) and overdetermined (if \(M > L \)) system of YW equations.

High-Order and Overdetermined YW Equations, con't

Fact: \(\text{rank}(\Omega) = n \)

SVD of \(\Omega \):

\[\Omega = U\Sigma V^* \]

\[\bullet \quad U = (M \times n) \text{ with } U^*U = I_n \]

\[\bullet \quad V^* = (n \times L) \text{ with } V^*V = I_n \]

\[\bullet \quad \Sigma = (n \times n), \text{ diagonal and nonsingular} \]

Thus,

\[(U\Sigma V^*)b = -\rho \]

The Minimum-Norm solution is

\[b = -\Omega^\dagger \rho = -V\Sigma^{-1}U^*\rho \]

Important property: The additional \((L - n)\) spurious zeros of \(B(q) \) are located strictly inside the unit circle, if the Minimum-Norm solution \(b \) is used.
Let $\hat{\Omega} = \Omega$ but made from $\{\hat{r}(k)\}$ instead of $\{r(k)\}$.

Let \hat{U}, $\hat{\Sigma}$, \hat{V} be defined similarly to U, Σ, V from the SVD of $\hat{\Omega}$.

Compute $\hat{b} = -\hat{V} \hat{\Sigma}^{-1} \hat{U}^* \hat{\rho}$

Then $\{\hat{\omega}_k\}_{k=1}^n$ are found from the n zeroes of $\hat{B}(q)$ that are closest to the unit circle.

When the SNR is low, this approach may give spurious frequency estimates when $L > n$; this is the price paid for increased accuracy when $L > n$.

Parametric Methods
for
Line Spectra — Part 2

Lecture 6
The Covariance Matrix Equation

Let:

\[
\begin{align*}
a(\omega) &= [1 \ e^{-i\omega} \ldots \ e^{-(m-1)\omega}]^T \\
A &= [a(\omega_1) \ldots a(\omega_n)] \quad (m \times n)
\end{align*}
\]

Note: \(\text{rank}(A) = n\) (for \(m \geq n\))

Define

\[
\begin{aligned}
\tilde{y}(t) &\triangleq \begin{bmatrix} y(t) \\ y(t-1) \\ \vdots \\ y(t-m+1) \end{bmatrix} = A\tilde{x}(t) + \tilde{e}(t)
\end{aligned}
\]

where

\[
\begin{align*}
\tilde{x}(t) &= [x_1(t) \ldots x_n(t)]^T \\
\tilde{e}(t) &= [e(t) \ldots e(t-m+1)]^T
\end{align*}
\]

Then

\[
R \triangleq E \{\tilde{y}(t)\tilde{y}^*(t)\} = APA^* + \sigma^2I
\]

with

\[
P = E \{\tilde{x}(t)\tilde{x}^*(t)\} = \begin{bmatrix} \alpha_1^2 & 0 \\ 0 & \alpha_2^2 \end{bmatrix}
\]

Eigendecomposition of \(R\) and Its Properties

\[
R = APA^* + \sigma^2I \quad (m > n)
\]

Let:

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m: \text{eigenvalues of } R
\]

\[
\{s_1, \ldots, s_n\}: \text{orthonormal eigenvectors associated with } \{\lambda_1, \ldots, \lambda_n\}
\]

\[
\{g_1, \ldots, g_{m-n}\}: \text{orthonormal eigenvectors associated with } \{\lambda_{n+1}, \ldots, \lambda_m\}
\]

\[
S = [s_1 \ldots s_n] \quad (m \times n) \\
G = [g_1 \ldots g_{m-n}] \quad (m \times (m-n))
\]

Thus,

\[
R = [S \ G] \begin{bmatrix} \lambda_1 & \ldots \\ \cdots & \lambda_m \end{bmatrix} \begin{bmatrix} S^* \\ G^* \end{bmatrix}
\]
Eigendecomposition of R and Its Properties, con't

As rank(APA^*) = n:

$$
\lambda_k > \sigma^2 \quad k = 1, \ldots, n \\
\lambda_k = \sigma^2 \quad k = n + 1, \ldots, m
$$

$$
\hat{\Lambda} = \begin{bmatrix}
\lambda_1 - \sigma^2 & 0 \\
0 & \ddots \\
0 & \cdots & \lambda_n - \sigma^2
\end{bmatrix}
$$

= nonsingular

Note:

$$
RS = APA^*S + \sigma^2 S = S \begin{bmatrix}
\lambda_1 & 0 \\
0 & \ddots \\
0 & \cdots & \lambda_n
\end{bmatrix}
$$

$$
S = A(PA^*S\hat{\Lambda}^{-1}) \triangleq AC
$$

with $|C| \neq 0$ (since rank(S) = rank(A) = n).

Therefore, since $S^*G = 0$,

$$
A^*G = 0
$$

MUSIC Method

$$
A^*G = \begin{bmatrix} a^*(\omega_1) \\
\vdots \\
a^*(\omega_n) \end{bmatrix}
G = 0
$$

$$
\Rightarrow \{a(\omega_k)\}_{k=1}^n \perp \mathcal{R}(G)
$$

Thus,

$$
\{\omega_k\}_{k=1}^n \text{ are the unique solutions of } a^*(\omega)GG^*a(\omega) = 0.
$$

Let:

$$
\hat{\rho} = \frac{1}{N} \sum_{t=m}^N \tilde{y}(t)\tilde{y}^*(t)
$$

$$
\tilde{S}, \tilde{G} = S, G \text{ made from the eigenvectors of } \hat{\rho}
$$
Spectral and Root MUSIC Methods

Spectral MUSIC Method:

\[\{ \hat{\omega}_k \}_{k=1}^n = \text{the locations of the } n \text{ highest peaks of the} \]
\[\text{"pseudo-spectrum" function:} \]
\[\frac{1}{a^*(\omega) \hat{G} \hat{G}^* a(\omega)}, \quad \omega \in [-\pi, \pi] \]

Root MUSIC Method:

\[\{ \hat{\omega}_k \}_{k=1}^n = \text{the angular positions of the } n \text{ roots of:} \]
\[a^T(z^{-1}) \hat{G} \hat{G}^* a(z) = 0 \]

that are closest to the unit circle. Here,
\[a(z) = [1, z^{-1}, \ldots, z^{-(m-1)}]^T \]

Note: Both variants of MUSIC may produce spurious frequency estimates.

Pisarenko Method

Pisarenko is a special case of MUSIC with \(m = n + 1 \)
(the minimum possible value).

If: \(m = n + 1 \)

Then: \(\hat{G} = \hat{g}_1 \),
\[\Rightarrow \{ \hat{\omega}_k \}_{k=1}^n \text{ can be found from the roots of} \]
\[a^T(z^{-1}) \hat{g}_1 = 0 \]

- no problem with spurious frequency estimates
- computationally simple
- (much) less accurate than MUSIC with \(m \gg n + 1 \)
Min-Norm Method

Goals: Reduce computational burden, and reduce risk of false frequency estimates.

Uses $m \gg n$ (as in MUSIC), but only one vector in $\mathcal{R}(G)$ (as in Pisarenko).

Let
\[
\begin{bmatrix}
1 \\
\hat{g}
\end{bmatrix} = \text{the vector in } \mathcal{R}(\hat{G}), \text{ with first element equal to one, that has minimum Euclidean norm.}
\]

Min-Norm Method, con't

Spectral Min-Norm

\[\{\tilde{\omega}\}_{k=1}^{n} = \text{the locations of the } n \text{ highest peaks in the “pseudo-spectrum”}\]
\[
1 / |a^*(\omega) \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix}|^2
\]

Root Min-Norm

\[\{\tilde{\omega}\}_{k=1}^{n} = \text{the angular positions of the } n \text{ roots of the polynomial}\]
\[
a^T(z^{-1}) \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix}
\]

that are closest to the unit circle.
Min-Norm Method: Determining \hat{g}

Let $\tilde{S} = \begin{bmatrix} \alpha^* \\ \tilde{S} \end{bmatrix} \{ 1 \}_{m-1}$

Then:

$$\begin{bmatrix} 1 \\ \hat{g} \end{bmatrix} \in \mathcal{R}(\hat{G}) \Rightarrow \tilde{S}^* \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix} = 0$$

$$\Rightarrow \tilde{S}^* \hat{g} = -\alpha$$

Min-Norm solution: $\hat{g} = -\tilde{S}(\tilde{S}^* \tilde{S})^{-1} \alpha$

As: $I = \tilde{S}^* \tilde{S} = \alpha \alpha^* + \tilde{S}^* \tilde{S}, (\tilde{S}^* \tilde{S})^{-1}$ exists iff

$$\alpha \alpha^* = \|\alpha\|^2 \neq 1$$

(This holds, at least, for $N \gg 1$.)

Multiplying the above equation by α gives:

$$\alpha (1 - \|\alpha\|^2) = (\tilde{S}^* \tilde{S}) \alpha$$

$$\Rightarrow (\tilde{S}^* \tilde{S})^{-1} \alpha = \alpha / (1 - \|\alpha\|^2)$$

$$\Rightarrow \hat{g} = -\tilde{S} \alpha / (1 - \|\alpha\|^2)$$

ESPRIT Method

Let

$$A_1 = [I_{m-1} \ 0] A$$

$$A_2 = [0 \ I_{m-1}] A$$

Then $A_2 = A_1 D$, where

$$D = \begin{bmatrix}
e^{-i \omega_1} & \cdots & 0 \\
0 & \ddots & \vdots \\
0 & \cdots & e^{-i \omega_n}
\end{bmatrix}$$

Also, let

$$S_1 = [I_{m-1} \ 0] S$$

$$S_2 = [0 \ I_{m-1}] S$$

Recall $S = A C$ with $|C| \neq 0$. Then

$$S_2 = A_2 C = A_1 D C = S_1 C^{-1} \underbrace{D C}_{\phi}$$

So ϕ has the same eigenvalues as D. ϕ is uniquely determined as

$$\phi = (S_1^* S_1)^{-1} S_1^* S_2$$
ESPRIT Implementation

From the eigendecomposition of \hat{R}, find \hat{S}, then \hat{S}_1 and \hat{S}_2.

The frequency estimates are found by:

$$\{\hat{\omega}_k\}_{k=1}^n = -\arg(\hat{\nu}_k)$$

where $\{\hat{\nu}_k\}_{k=1}^n$ are the eigenvalues of

$$\hat{\phi} = (\hat{S}_1^*\hat{S}_1)^{-1}\hat{S}_1^*\hat{S}_2$$

ESPRIT Advantages:

- computationally simple
- no extraneous frequency estimates (unlike in MUSIC or Min–Norm)
- accurate frequency estimates

<table>
<thead>
<tr>
<th>Method</th>
<th>Computational Burden</th>
<th>Accuracy / Risk for False Freq Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodogram</td>
<td>small</td>
<td>medium-high</td>
</tr>
<tr>
<td>Nonlinear LS</td>
<td>very high</td>
<td>medium</td>
</tr>
<tr>
<td>Yule-Walker</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Pisarenko</td>
<td>small</td>
<td>low</td>
</tr>
<tr>
<td>MUSIC</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Min-Norm</td>
<td>medium</td>
<td>small</td>
</tr>
<tr>
<td>ESPRIT</td>
<td>medium</td>
<td>very high</td>
</tr>
</tbody>
</table>

Recommendation:

- Use Periodogram for medium-resolution applications
- Use ESPRIT for high-resolution applications
Filter Bank Methods

Lecture 7

Basic Ideas

Two main PSD estimation approaches:

1. **Parametric Approach**: Parameterize $\phi(\omega)$ by a finite-dimensional model.

2. **Nonparametric Approach**: Implicitly smooth $\{\phi(\omega)\}_{\omega=-\pi}^{\pi}$ by assuming that $\phi(\omega)$ is nearly constant over the bands $[\omega - \beta\pi, \omega + \beta\pi]$, $\beta \ll 1$

2 is more general than 1, but 2 requires $N\beta > 1$ to ensure that the number of estimated values ($= 2\pi / 2\pi\beta = 1/\beta$) is $< N$.

$N\beta > 1$ leads to the variability / resolution compromise associated with all nonparametric methods.
Filter Bank Approach to Spectral Estimation

\[H(\omega) \]

\[y(t) \]

Bandpass Filter with varying \(\omega_c \) and fixed bandwidth

Filtered Signal

Power Calculation

Power in the band

Division by filter bandwidth

\[\phi(\omega_c) \]

\[\phi_F(\omega) \]

\[\frac{1}{2\pi} \int_{-\pi}^{\pi} H(\tau) \phi(\tau) d\tau \]

(b) Ideal passband filter with bandwidth \(\beta \)

(c) \(\phi(\tau) \) constant on \(\tau \in [\omega - 2\pi\beta, \omega + 2\pi\beta] \)

Note that assumptions (a) and (b), as well as (b) and (c), are conflicting.

Lecture notes to accompany Introduction to Spectral Analysis Slide L7–3 by P. Stoica and R. Moses, Prentice Hall, 1997
Filter Bank Interpretation of the Periodogram, con't

\[|H(\omega)| \] as a function of \((\tilde{\omega} - \omega)\), for \(N = 50\).

Conclusion: The periodogram \(\hat{\phi}_p(\omega) \) is a filter bank PSD estimator with bandpass filter as given above, and:

- narrow filter passband,
- power calculation from only 1 sample of filter output.

Possible Improvements to the Filter Bank Approach

1. **Split the available sample**, and bandpass filter each subsample.
 - more data points for the power calculation stage.
 This approach leads to Bartlett and Welch methods.

2. Use **several bandpass filters on the whole sample**.
 Each filter covers a small band centered on \(\tilde{\omega}\).
 - provides several samples for power calculation.
 This “multiwindow approach” is similar to the Daniell method.

Both approaches **compromise bias for variance**, and in fact are quite related to each other: splitting the data sample can be interpreted as a special form of windowing or filtering.
Capon Method

Idea: Data-dependent bandpass filter design.

\[y_F(t) = \sum_{k=0}^{m} h_k y(t - k) \]

\[= \begin{bmatrix} h_0 & h_1 & \ldots & h_m \\ \hat{h}^* \\ y(t - m) \end{bmatrix} \begin{bmatrix} y(t) \\ \vdots \\ \tilde{y}(t) \end{bmatrix} \]

\[E \left\{ |y_F(t)|^2 \right\} = \hat{h}^* R \hat{h}, \quad R = E \{ \tilde{y}(t) \tilde{y}^*(t) \} \]

\[H(\omega) = \sum_{k=0}^{m} h_k e^{-i\omega k} = \hat{h}^* a(\omega) \]

where \(a(\omega) = [1, e^{-i\omega} \ldots e^{-im\omega}]^T \)

Capon Filter Design Problem:

\[\min_{h} (\hat{h}^* R \hat{h}) \quad \text{subject to } \hat{h}^* a(\omega) = 1 \]

Solution: \[\hat{h}_0 = R^{-1} a/R^{-1} a \]

The power at the filter output is:

\[E \left\{ |y_F(t)|^2 \right\} = \hat{h}_0^* R \hat{h}_0 = 1/a^*(\omega) R^{-1} a(\omega) \]

which should be the power of \(y(t) \) in a passband centered on \(\omega \).

The Bandwidth \(\sim \frac{1}{m+1} = \frac{1}{\text{(filter length)}} \)

Conclusion Estimate PSD as:

\[\tilde{\phi}(\omega) = \frac{m + 1}{a^*(\omega) \hat{R}^{-1} a(\omega)} \]

with

\[\hat{R} = \frac{1}{N - m} \sum_{t=m+1}^{N} \tilde{y}(t) \tilde{y}^*(t) \]
Capon Properties

- m is the user parameter that controls the compromise between bias and variance:
 - as m increases, bias decreases and variance increases.

- Capon uses one bandpass filter only, but it splits the N-data point sample into $(N - m)$ subsequences of length m with maximum overlap.

Relation between Capon and Blackman-Tukey Methods

Consider $\tilde{\phi}_{BT}(\omega)$ with Bartlett window:

$$\tilde{\phi}_{BT}(\omega) = \sum_{k=-m}^{m} \frac{m + 1 - |k|}{m + 1} \hat{r}(k)e^{-i\omega k}$$

$$= \frac{1}{m + 1} \sum_{t=0}^{m} \sum_{s=0}^{m} \hat{r}(t - s)e^{-i\omega(t-s)}$$

$$= \frac{a^*(\omega)\hat{R}a(\omega)}{m + 1}; \quad \hat{R} = [\hat{r}(i - j)]$$

Then we have

$$\tilde{\phi}_{BT}(\omega) = \frac{a^*(\omega)\hat{R}a(\omega)}{m + 1}$$

$$\tilde{\phi}_C(\omega) = \frac{m + 1}{a^*(\omega)\hat{R}^{-1}a(\omega)}$$
Relation between Capon and AR Methods

Let
\[\hat{\phi}_k^{\text{AR}}(\omega) = \frac{\hat{\sigma}_k^2}{|\hat{A}_k(\omega)|^2} \]
be the \(k \)th order AR PSD estimate of \(y(t) \).

Then
\[\hat{\phi}_C(\omega) = \frac{1}{m+1} \sum_{k=0}^{m} \frac{1}{\hat{\phi}_k^{\text{AR}}(\omega)} \]

Consequences:

- Due to the average over \(k \), \(\hat{\phi}_C(\omega) \) generally has less statistical variability than the AR PSD estimator.

- Due to the low-order AR terms in the average, \(\hat{\phi}_C(\omega) \) generally has worse resolution and bias properties than the AR method.
The Spatial Spectral Estimation Problem

Problem: Detect and locate \(n \) radiating sources by using an array of \(m \) passive sensors.

Emitted energy: Acoustic, electromagnetic, mechanical

Receiving sensors: Hydrophones, antennas, seismometers

Applications: Radar, sonar, communications, seismology, underwater surveillance

Basic Approach: Determine energy distribution over space (thus the name “spatial spectral analysis”)

Simplifying Assumptions

- Far-field sources in the same plane as the array of sensors
- Non-dispersive wave propagation

Hence: The waves are planar and the only location parameter is direction of arrival (DOA) (or angle of arrival, AOA).

- The number of sources \(n \) is known. (We do not treat the detection problem)

- The sensors are linear dynamic elements with known transfer characteristics and known locations
 (That is, the array is calibrated.)
Array Model — Single Emitter Case

\[x(t) = \text{the signal waveform as measured at a reference point (e.g., at the “first” sensor)} \]

\[\tau_k = \text{the delay between the reference point and the } k\text{th sensor} \]

\[h_k(t) = \text{the impulse response (weighting function) of sensor } k \]

\[\bar{e}_k(t) = \text{“noise” at the } k\text{th sensor (e.g., thermal noise in sensor electronics; background noise, etc.)} \]

Note: \(t \in \mathcal{R} \) (continuous-time signals).

Then the output of sensor \(k \) is

\[\tilde{y}_k(t) = h_k(t) \ast x(t - \tau_k) + \bar{e}_k(t) \]

\((\ast = \text{convolution operator}).\)

Basic Problem: Estimate the time delays \(\{\tau_k\} \) with \(h_k(t) \) known but \(x(t) \) unknown.

This is a time-delay estimation problem in the unknown input case.

Narrowband Assumption

Assume: The emitted signals are narrowband with known carrier frequency \(\omega_c \).

Then: \(x(t) = \alpha(t) \cos[\omega_c t + \varphi(t)] \)

where \(\alpha(t), \varphi(t) \) vary “slowly enough” so that \(\alpha(t - \tau_k) \approx \alpha(t), \quad \varphi(t - \tau_k) \approx \varphi(t) \)

Time delay is now \(\approx \) to a phase shift \(\omega_c \tau_k \):

\[x(t - \tau_k) \approx \alpha(t) \cos[\omega_c t + \varphi(t) - \omega_c \tau_k] \]

\[h_k(t) \ast x(t - \tau_k) \]

\[\approx |H_k(\omega_c)|\alpha(t) \cos[\omega_c t + \varphi(t) - \omega_c \tau_k + \arg H_k(\omega_c)] \]

where \(H_k(\omega) = \mathcal{F}\{h_k(t)\} \) is the \(k\)th sensor’s transfer function.

Hence, the \(k\)th sensor output is

\[\tilde{y}_k(t) = |H_k(\omega_c)|\alpha(t) \cdot \cos[\omega_c t + \varphi(t) - \omega_c \tau_k + \arg H_k(\omega_c)] + \bar{e}_k(t) \]
Complex Signal Representation

The noise-free output has the form:

\[
z(t) = \beta(t) \cos [\omega_c t + \psi(t)] = \frac{\beta(t)}{2} \left\{ e^{i[\omega_c t + \psi(t)]} + e^{-i[\omega_c t + \psi(t)]} \right\}
\]

Demodulate \(z(t) \) (translate to baseband):

\[
2z(t)e^{-\omega_c t} = \beta(t) \left\{ e^{i\psi(t)} + e^{-i[2\omega_c t + \psi(t)]} \right\}
\]

Lowpass filter \(2z(t)e^{-i\omega_c t} \) to obtain \(\beta(t)e^{i\psi(t)} \)

Hence, by low-pass filtering and sampling the signal

\[
\tilde{y}_k(t)/2 = \tilde{y}_k(t)e^{-i\omega_c t}
\]

we get the **complex representation**: (for \(t \in \mathbb{Z} \))

\[
y_k(t) = \alpha(t) e^{i\varphi(t)} \left| H_k(\omega_c) \right| \left\{ e^{i\arg[H_k(\omega_c)]} e^{-i\omega_c \tau_k} + e_k(t) \right\}
\]

or

\[
y_k(t) = s(t) H_k(\omega_c) e^{-i\omega_c \tau_k} + e_k(t)
\]

where \(s(t) \) is the complex envelope of \(x(t) \).

Vector Representation for a Narrowband Source

Let

\[
\theta = \text{the emitter DOA} \\
m = \text{the number of sensors} \\
a(\theta) = \begin{bmatrix} H_1(\omega_c) e^{-i\omega_c \tau_1} \\ \vdots \\ H_m(\omega_c) e^{-i\omega_c \tau_m} \end{bmatrix}
\]

\[
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_m(t) \end{bmatrix} \\
e(t) = \begin{bmatrix} e_1(t) \\ \vdots \\ e_m(t) \end{bmatrix}
\]

Then

\[
y(t) = a(\theta)s(t) + e(t)
\]

NOTE: \(\theta \) enters \(a(\theta) \) via both \(\{\tau_k\} \) and \(\{H_k(\omega_c)\} \).

For omnidirectional sensors the \(\{H_k(\omega_c)\} \) do not depend on \(\theta \).
Multiple Emitter Case

Given n emitters with

- received signals: $\{s_k(t)\}_{k=1}^n$
- DOAs: θ_k

Linear sensors \Rightarrow

$$y(t) = a(\theta_1)s_1(t) + \cdots + a(\theta_n)s_n(t) + e(t)$$

Let

$$A = [a(\theta_1) \ldots a(\theta_n)], \quad (m \times n)$$

$$s(t) = [s_1(t) \ldots s_n(t)]^T, \quad (n \times 1)$$

Then, the array equation is:

$$y(t) = As(t) + e(t)$$

Use the planar wave assumption to find the dependence of τ_k on θ.

Lecture notes to accompany *Introduction to Spectral Analysis* by P. Stoica and R. Moses, Prentice Hall, 1997
Uniform Linear Arrays

ULA Geometry

Sensor #1 = time delay reference

Time Delay for sensor k:

$$\tau_k = (k - 1) \frac{d \sin \theta}{c}$$

where $c =$ wave propagation speed

Spatial Frequency

Let:

$$\omega_s \triangleq \omega_c \frac{d \sin \theta}{c} = 2\pi \left(\frac{d \sin \theta}{c/f_c} \right) = 2\pi \frac{d \sin \theta}{\lambda}$$

$$\lambda = \frac{c}{f_c} = \text{signal wavelength}$$

$$a(\theta) = [1, e^{-i\omega_s} \ldots e^{-i(m-1)\omega_s}]^T$$

By direct analogy with the vector $a(\omega)$ made from uniform samples of a sinusoidal time series,

$$\omega_s = \text{spatial frequency}$$

The function $\omega_s \mapsto a(\theta)$ is one-to-one for

$$|\omega_s| \leq \pi \iff \frac{d|\sin \theta|}{\lambda/2} \leq 1 \iff d \leq \lambda/2$$

As

$$d \leq \lambda/2$$

is a spatial Shannon sampling theorem.
Spatial Filtering

Spatial filtering useful for

- DOA discrimination (similar to frequency discrimination of time-series filtering)
- Nonparametric DOA estimation

There is a strong analogy between temporal filtering and spatial filtering.
Analogy between Temporal and Spatial Filtering

Temporal FIR Filter:

\[y_F(t) = \sum_{k=0}^{m-1} h_k u(t - k) = h^* y(t) \]

\[h = [h_0 \ldots h_{m-1}]^* \]

\[y(t) = [u(t) \ldots u(t - m + 1)]^T \]

If \(u(t) = e^{i\omega t} \) then

\[y_F(t) = [h^* a(\omega)] u(t) \]

filter transfer function

\[a(\omega) = [1, e^{-i\omega} \ldots e^{-i(m-1)\omega}]^T \]

We can select \(h \) to enhance or attenuate signals with different frequencies \(\omega \).

Analogy between Temporal and Spatial Filtering

Spatial Filter:

\[\{y_k(t)\}_{k=1}^m = \text{the “spatial samples” obtained with a sensor array.} \]

Spatial FIR Filter output:

\[y_F(t) = \sum_{k=1}^{m} h_k y_k(t) = h^* y(t) \]

Narrowband Wavefront: The array's (noise-free) response to a narrowband (\(\sim \) sinusoidal) wavefront with complex envelope \(s(t) \) is:

\[y(t) = a(\theta) s(t) \]

\[a(\theta) = [1, e^{-i\omega c\tau_2} \ldots e^{-i\omega c\tau_m}]^T \]

The corresponding filter output is

\[y_F(t) = [h^* a(\theta)] s(t) \]

filter transfer function

We can select \(h \) to enhance or attenuate signals coming from different DOAs.
Analogy between Temporal and Spatial Filtering

(a) Temporal filter

\[u(t) = e^{j\omega t} \]

\[\begin{pmatrix} 1 \\ e^{-j\omega} \\ \vdots \\ e^{-(m-1)\omega} \end{pmatrix} \]

\[a(\omega) \]

\[[h^*a(\omega)]u(t) \]

(b) Spatial filter

narrowband source with DOA=\theta

Example: The response magnitude \(|h^*a(\theta)|\) of a spatial filter (or beamformer) for a 10-element ULA. Here, \(h = a(\theta_0) \), where \(\theta_0 = \theta^\circ \).
Spatial Filtering Uses

Spatial Filters can be used

- To pass the signal of interest only, hence filtering out interferences located outside the filter’s beam (but possibly having the same temporal characteristics as the signal).

- To locate an emitter in the field of view, by sweeping the filter through the DOA range of interest (“goniometer”).

Nonparametric Spatial Methods

A Filter Bank Approach to DOA estimation.

Basic Ideas

- Design a filter $h(\theta)$ such that for each θ
 - It passes undistorted the signal with DOA = θ
 - It attenuates all DOA$\neq \theta$

- Sweep the filter through the DOA range of interest, and evaluate the powers of the filtered signals:

 $$E \left\{ |y_{\ell}(t)|^2 \right\} = E \left\{ |h^*(\theta)y(t)|^2 \right\} = h^*(\theta)R_h(\theta)$$

 with $R = E \left\{ y(t)y^*(t) \right\}$.

- The (dominant) peaks of $h^*(\theta)R_h(\theta)$ give the DOAs of the sources.
Beamforming Method

Assume the array output is spatially white:

\[R = E \{y(t)y^*(t)\} = I \]

Then:

\[E \{|y_F(t)|^2\} = h^*h \]

Hence: In direct analogy with the temporally white assumption for filter bank methods, \(y(t) \) can be considered as impinging on the array from all DOAs.

Filter Design:

\[
\min_h (h^*h) \text{ subject to } h^*a(\theta) = 1
\]

Solution:

\[
h = a(\theta)/a^*(\theta)a(\theta) = a(\theta)/m
\]

\[E \{|y_F(t)|^2\} = a^*(\theta)Ra(\theta)/m^2 \]

Implementation of Beamforming

\[
\hat{R} = \frac{1}{N} \sum_{t=1}^{N} y(t)y^*(t)
\]

The beamforming DOA estimates are:

\[
\{\hat{\theta}_k\} = \text{the locations of the } n \text{ largest peaks of } a^*(\theta)Ra(\theta).
\]

This is the direct spatial analog of the Blackman-Tukey periodogram.

Resolution Threshold:

\[
\inf |\theta_k - \theta_p| > \frac{\text{wavelength}}{\text{array length}} = \text{array beamwidth}
\]

Inconsistency problem:

Beamforming DOA estimates are consistent if \(n = 1 \), but inconsistent if \(n > 1 \).
Capon Method

Filter design:

\[
\min_h (h^* R h) \quad \text{subject to} \quad h^* a(\theta) = 1
\]

Solution:

\[
h = R^{-1} a(\theta) / a^*(\theta) R^{-1} a(\theta)
\]

\[
E \{|y_F(t)|^2\} = 1 / a^*(\theta) R^{-1} a(\theta)
\]

Implementation:

\[
\{\hat{\theta}_k\} = \text{the locations of the } n \text{ largest peaks of } 1 / a^*(\theta) \hat{R}^{-1} a(\theta).
\]

Performance: Slightly superior to Beamforming.

Both Beamforming and Capon are nonparametric approaches. They do not make assumptions on the covariance properties of the data (and hence do not depend on them).

Parametric Methods

Assumptions:

- The array is described by the equation:
 \[
y(t) = As(t) + e(t)
 \]
- The noise is spatially white and has the same power in all sensors:
 \[
 E \{e(t)e^*(t)\} = \sigma^2 I
 \]
- The signal covariance matrix
 \[
P = E \{s(t)s^*(t)\}
 \]
 is nonsingular.

Then:

\[
R = E \{y(t)y^*(t)\} = APA^* + \sigma^2 I
\]

Thus: The NLS, YW, MUSIC, MIN-NORM and ESPRIT methods of frequency estimation can be used, almost without modification, for DOA estimation.
Nonlinear Least Squares Method

\[
\min_{\{\theta_k\}, \{s(t)\}} \frac{1}{N} \sum_{t=1}^{N} \|y(t) - As(t)\|^2
\]

Minimizing \(f \) over \(s \) gives

\[
\hat{s}(t) = (A^* A)^{-1} A^* y(t), \quad t = 1, \ldots, N
\]

Then

\[
f(\theta, \hat{s}) = \frac{1}{N} \sum_{t=1}^{N} \| [I - A(A^* A)^{-1} A^*] y(t) \|^2
\]

\[
= \frac{1}{N} \sum_{t=1}^{N} y^*(t) [I - A(A^* A)^{-1} A^*] y(t)
\]

\[
= \text{tr}\{[I - A(A^* A)^{-1} A^*] \hat{R}\}
\]

Thus,

\[
\{\hat{\theta}_k\} = \arg \max_{\{\theta_k\}} \text{tr}\{[A(A^* A)^{-1} A^*] \hat{R}\}
\]

For \(N = 1 \), this is precisely the form of the NLS method of frequency estimation.

Properties of NLS:

- Performance: high
- Computational complexity: high
- Main drawback: need for multidimensional search.
Yule-Walker Method

\[
y(t) = \begin{bmatrix} \bar{y}(t) \\ \bar{\bar{y}}(t) \end{bmatrix} = \begin{bmatrix} \bar{A} \\ \bar{\bar{A}} \end{bmatrix} s(t) + \begin{bmatrix} \bar{e}(t) \\ \bar{\bar{e}}(t) \end{bmatrix}
\]

Assume: \(E \{\bar{e}(t)\bar{e}^*(t)\} = 0 \)

Then:

\[
\Gamma \triangleq E \{\bar{y}(t)\bar{y}^*(t)\} = \bar{A}\bar{A}^* \quad (M \times L)
\]

Also assume:

- \(M > n, \ L > n \quad (\Rightarrow m = M + L > 2n) \)
- \(\text{rank}(\bar{\bar{A}}) = \text{rank}(\bar{A}) = n \)

Then: \(\text{rank}(\Gamma) = n \), and the SVD of \(\Gamma \) is

\[
\Gamma = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_{n \times n} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix} \]

\[
\begin{bmatrix} \bar{A}^*V_2 \\ V_1 \end{bmatrix} = 0 \quad V_1 \in \mathcal{R}(\bar{A})
\]

Properties:

- \(\bar{A}(\theta), (L \times 1), \) is the “array transfer vector” for \(\bar{y}(t) \) at DOA \(\theta \)
- \(\bar{V}_2 \) is defined similarly to \(V_2 \), using

\[
\bar{\Gamma} = \frac{1}{N} \sum_{t=1}^{N} \bar{y}(t)\bar{y}^*(t)
\]

YW-MUSIC DOA Estimator

\[
\{\hat{\theta}_k\} = \text{the n largest peaks of} \quad \frac{1}{\bar{a}^*(\theta)}\bar{V}_2\bar{\bar{V}}_2^*\bar{a}(\theta)
\]

where

- \(\bar{a}(\theta), (L \times 1), \) is the “array transfer vector” for \(\bar{y}(t) \) at DOA \(\theta \)
- \(\bar{V}_2 \) is defined similarly to \(V_2 \), using

\[
\Gamma = \frac{1}{N} \sum_{t=1}^{N} \bar{y}(t)\bar{y}^*(t)
\]

Properties:

- Computational complexity: medium
- Performance: satisfactory if \(m \gg 2n \)
- Main advantages:
 - weak assumption on \(\{e(t)\} \)
 - the subarray \(\bar{A} \) need not be calibrated
MUSIC and Min-Norm Methods

Both MUSIC and Min-Norm methods for frequency estimation apply with only minor modifications to the DOA estimation problem.

- Spectral forms of MUSIC and Min-Norm can be used for arbitrary arrays
- Root forms can be used only with ULAs
- MUSIC and Min-Norm break down if the source signals are coherent; that is, if
 \[\text{rank}(P) = \text{rank}(E \{ s(t)s^*(t) \}) < n \]

Modifications that apply in the coherent case exist.

ESPRIT Method

Assumption: The array is made from two identical subarrays separated by a known displacement vector.

Let

\[\tilde{m} = \# \text{sensors in each subarray} \]
\[A_1 = [I_{\tilde{m}} \ 0]A \quad \text{(transfer matrix of subarray 1)} \]
\[A_2 = [0 \ I_{\tilde{m}}]A \quad \text{(transfer matrix of subarray 2)} \]

Then

\[A_2 = A_1 D, \text{ where} \]
\[D = \begin{bmatrix}
 e^{-i\omega_c \tau(\theta_1)} & 0 \\
 0 & \ddots & \ddots \\
 0 & \ddots & e^{-i\omega_c \tau(\theta_n)}
\end{bmatrix} \]

\[\tau(\theta) = \text{the time delay from subarray 1 to subarray 2 for a signal with DOA} = \theta: \]
\[\tau(\theta) = d \sin(\theta)/c \]

where \(d \) is the subarray separation and \(\theta \) is measured from the perpendicular to the subarray displacement vector.
ESPRIT Method, con’t

ESPRIT Scenario

- Source
- Known displacement vector
- Subarray 1
- Subarray 2

Properties:

- Requires special array geometry
- Computationally efficient
- *No risk* of spurious DOA estimates
- Does not require array calibration

Note: For a ULA, the two subarrays are often the first \(m - 1\) and last \(m - 1\) array elements, so \(\bar{m} = m - 1\) and

\[
A_1 = [I_{m-1} \ 0]A, \quad A_2 = [0 \ I_{m-1}]A
\]