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1 Introduction

System identification deals with the problem of building mathematical models
of dynamic systems based on observed data collected from the system. This is
a basic scientific methodology and since dynamic models of systems are used in
almost all disciplines, system identification has a very broad application area.

The basic set-up in system identification is that given measurement of the input
and the output of the system finding an appropriate model of the system. A key
problem is that in almost all cases, the output is not only affected by the input
(via the system) but also by unmeasurable disturbances, 'noise’, see Figure 1.
The disturbance v can for example be sensor noise and/or a unmeasured load

disturbances.
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Figure 1: A system G(q) with input u and output y, where the output y is affected
by an unmeasurable disturbance v.

In order to analyze and understand system identification it is a prerequisite to
understand some basic properties of disturbances and in particular stochastic
disturbances. In this computer laboratory, properties of discrete-time stationary
stochastic processes will therefore be studied/“refreshed”, in order to give a
feasible background for understanding system identification.

2 Basic concepts and preparations

2.1 Deterministic vs stochastic signals

The most characteristic feature of a disturbance is that its value is not known
beforehand. Hence a deterministic model like, for example, w(t) = sin(¢) is
seldom a good way of describing a disturbance. Instead, it is more natural to
use stochastic (or random) concepts to describe disturbances.

As a simple example of a stochastic process consider the output signal generated
by tossing a coin 5000 times (+1 for heads, -1 for tails). We will obtain a
different output sequence every time we do the experiment. The output from
each experiment is called a realization of the stochastic process.

As a stochastic process represents a whole family of signal realizations, the
deterministic signal descriptions can not be directly applied on a stochastic
process. The search for good ways of characterizing a stochastic process has been
a long and arduous one, but the mathematicians and statisticians of this century
have been able to develop a whole framework for stochastic processes that allows



us to describe them in a way that resembles that of deterministic signals in many
ways. The whole framework is built around the so called covariance function.

For a stochastic signal' w(t) the function
my = Bw(t) (1)
is called the mean value function. The (auto) covariance function is defined as
rw(T) =cov(w(t+7),w(t)) = E (w(t+7) —my) (w(t) —my)) (2)

Note that 7,(0) is the variance of the process and tells how large the fluctua-
tions are (the standard deviation is the square root of r,(0)). It follows from
Schwartz’s inequality that |ry,(7)| < 74,(0). The value of r,(7) gives the corre-
lation between values of the process with a time spacing of 7. Values close to
Tw(0) mean a strong correlation, zero values indicate no correlation and negative
values indicate negative correlation.

2.2 Characterizing the coin tossing stochastic process

The coin tossing process is a typical stochastic processes, so let us take a closer
look at it. We know that we get different realizations every time we run the
process, but what is it that characterizes all the realizations? The key character-
istic is that each toss is independent from the others, i.e. there is no correlation
between one toss and another. In mathematical terms we can describe this pro-
cess as a sequence of independent identically distributed (iid) random variables,
with mean value m = 0, and variance o2 = 1. The covariance function hence
becomes

0 for7#0

ro(r) = B (4t +7) —m) (y(t) —m)) = { ) 3)

o‘ fort=0
The correlation function for the coin tossing process simply says that the coin
tossing is uncorrelated (i.e. the chance of getting a head or tail does not depend
on what you got in the previous tossing) and has a variance of o2 = 1.

2.3 Spectral density of stochastic process

In the time domain a stochastic process w(t) is normally characterized by its
mean m and covariance function 7,(7). If we take the Fourier transform of the
covariance function we obtain the spectra of the process which describes the
frequency content of the stochastic process in a similar way that the Fourier
transform does for deterministic signals. The spectral density of a stochastic
process with covariance function r,,(7) is defined as

[e o]

pw(w) = o~ ru(T)e T (4)

!We will only consider stochastic processes that is wide sense stationarity, then both the
mean and covariance functions are independent of time.



The covariance function can be found from the spectral density by the inverse
relation

™
rw(T) = dw(w)e™ T dw (5)
-7
The area under the spectral density curve represents the mean signal power in
a certain frequency band. In particular we have that the variance of the signal
is given by

ru0) = [ du(w)de ©

The coin tossing process has a covariance function that is a unit impulse se-
quence. The Fourier transform of that is a constant, i.e., it has equal amounts
of all frequency components.

The coin tossing process is an example of a white noise process, i.e., a sequence of
independent random variables with a certain probability distribution. However,
as a disturbance model, the coin tossing is not very realistic (a random sequence
with -1 and 1). A more suitable pattern is obtained if the disturbance is modeled
as a white Gaussian process with zero mean and variance 0. Such a process is
often denoted

w(t) ~ N(0,0?%) (7)

2.4 Filtering of stochastic processes

In system identification it is of utmost importance to know and understand how
the characteristics of a stationary stochastic process change as the process is
filtered by a linear system or filter

H(g)=—1+= hn)g" (®)
A

In particular, we need to know how the mean, covariance function and spectrum
change. The main results are summarized in Figure 2. Notice, though, that in
practice it is seldom a good way to compute auto/cross covariance functions
using the formulas in Figure 2.

A large class of disturbances can be described by filtering a white noise process.
That is obtained by letting u(¢) in Figure 1 be white noise. We then have an
ARMA process.

Preparation exercise 1. Assume that white noise with zero mean and unit
variance is filtered. Determine a first order filter

b

Hz) = ©)




u(t) B(q)

y(t)

ro(7) = cov (u(t + 7),u(t))

ryu(T) = cov (y(t + 7), u(t)) = 7;}h(n)ru(T -n)

ry(T) = cov (y(t + 7),y(t)) = ; 2 h(n)h(D)ry(t +1—n)
o) = 3 3 rlr e = )00
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Figure 2: Summary of filtering results for stochastic processes.

that generates a signal with the spectral density

1 0.75

(10)

) = 21 1.25 — cosw
What is the variance of the signal? In Exercise 1, you will need the results from
here.
/Answer:

~




3 Filtering a white stochastic process

In this section we will analyze the covariance function, the spectrum and dif-
ferent realizations of a stochastic process that is obtained by filtering a white
stochastic process with the first and second order systems below.

b bzt b

H = H - v 7
1(2) z+a 2(2) 22+ a1z + ay

(11)
In particular, we will look at how system parameters such as poles and zeros

influence the results.

Exercise 1. Answer the following questions, with the help of the MATLAB
macro noise.

a) Test if the filter you calculated in Preparation exercise 1 is correct. Note
that b= 1/3/2 is a fix value.

b) Vary the poles of Hs(z) on a radius out from the origin. What happens?
¢) Where should you place the poles of Ho(z) to get a low-pass filter?

d) Where should you place the poles of Hy(z) to get a resonance top at w = 17
What can you say about the frequency content of the signal by just looking
at the realization?

e) How does a resonant system manifest its properties in the different diagrams?

f) What happens when Hs(z) has a zero close to the unit circle?

~

Answer:




4 Calculating and estimating covariance functions

Preparation exercise 2. Determine the covariance function for an AR(1)
process:

y(t) +ay(t — 1) = e(t) (12)

where e(t) is white noise with zero mean and unit variance.

/

Answer:

~

- /

Preparation exercise 3. Determine the covariance function for an MA(1)
process:

y(t) = e(t) +ce(t — 1) (13)

where e(t) is white noise with zero mean and unit variance. Moreover, let us
consider a general MA (n) process; for what values of 7 is it generally true that

r(r) =07
\

Answer:

\ J

For a stationary stochastic process? with mean m and covariance function r(7),
the covariance function can be estimated from data by

N-—1
#) & o Syl + ) —ry(e) - (14)
t=1

2Rather an ergodic process. However, for the processes studied in this course stationarity
will be sufficient for expressions as (14) and (15) to converge to their expected values.



where N is the number of data and

1>

m

1 N
= v (15)
t=1

is the estimated mean.

Exercise 2. With the macro 1ab1b you can simulate ARMA(1) processes (or,
especially, AR(1) and MA(1) processes)

y(t) + ay(t — 1) = e(t) + ce(t — 1) (16)

and estimate its covariance functions. The macro has the following syntax:
labib([1 c],[1 a],N,tau,nr);

Type help lablb for details. Default values are N=100, tau=50 and nr=1.
For example, to generate an AR(1) process with a pole in 0.9 use the syntax
labib([1 1,[1 -0.91);.

Inspect how the quality of the estimated covariance function vary with the
number of data N and the time shift 7 for different pole locations. Especially,
verify that the estimated covariance functions tends to the true ones, as the
number of data tends to infinity, for some AR(1) and MA(1) processes. Also
check if the results you obtained in prep. exc. 2-3 are correct. Repeat the
estimation procedure to study the effect of the individual realizations.

Answer:




5 (Spectral factorization)

Remark: This exercise is optional!

Spectral factorization can be viewed as a way to aggregate different noise sources.
Assume here that an ARMA process

A(g)z(t) = Clg)v(?) (17)

is observed in white measurement noise

y(t) = z(t) + e(?) (18)

and that v(¢) and e(t) are uncorrelated white noise sequences of zero mean and
variances A2 and A2, respectively. As far as the second order properties (the
spectrum and the covariance function) are concerned, y(t) can be viewed as
generated from one single noise source as

A(q)y(t) = D(g)e(?) (19)

The polynomial D and the noise variance A? are derived by equating the ex-
pressions for the spectra of the output signals in (18) and (19). The two repre-
sentations (17) and (18), and (19) of the process y(t), are shown schematically
in Figure 3.

v(t)

Q
=
_Q
=

8
—~
4~
SN—
<
—_
o~
SN—
™
~—~
~~
N

|
\

b | Y@
A(q)

2
&
(&

Figure 3: Two representations of an ARMA process with noisy observations.

Exercise 3. Let (17) be an AR(2) process. Then (19) will be an ARMA(2,2)
process. Investigate how the poles and zeros are varying with the signal-to-noise
ratio (SNR) defined as

Ex2(t)

(20)

by using the file 1lablc. In particular, what happens when
a) SNR — 0
b) SNR — oo

Also comment on the shape of the spectrum.



Answer:




