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System Identification

Computer exercise 2

Introduction to System Identification

Preparation exercises:
1. Study Chapters 2 and 3 of System Identification.

Also get familiar with the MATLAB code given in the lab.
2. Solve preparation exercises 1-3.
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1 Goals

The aim of this computer laboratory is to introduce the System Identification Toolbox,
and to illustrate non-parametric identification as well as the least squares method on
some data sets.

2 Tasks

We will in what follows consider two different systems, namely

St AlgMy(t) = Blg u(t) +e(?)

Sy AlgNz(t) = Blg )u(t)
y(t) = x(t) +e(?)

In both cases e(t) is assumed to be white Gaussian noise, independent of the input u(t),
and of zero mean and variance A\?. Note that the noise enters differently in the two sys-
tems. In S it enters as process noise, while in Sy it appears as pure white measurement
noise.

In what follows we will let the system parameters be given by
Alg)=1-08¢7"! B(qg™!) =1.0¢7! M =1

for both systems. Note that in the simulations below, 100 experiments are conducted.
This is to illustrate the biases (systematic error) and variances of different methods.
From one single realization it may be hard to know if the results are due to bad, or good
“luck”.

2.1 Non-parametric Identification

Non-parametric identification schemes are characterized by the property that the result-
ing models are curves of functions, not necessarily parametrized by a finite-dimensional
parameter vector. In this section we will study three different non-parametric methods,
namely, transient analysis, correlation analysis and spectral analysis.

Preparation exercise 1. Under what experimental conditions will the correlation anal-
ysis method work well (e.g. easy to apply)?

Answer:

Preparation exercise 2. What is the expected effect of the window factor M of the
spectral analysis method (Task 4)?
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Answer:

1. We begin by illustrating transient analysis. The system S; with the input u(t)
being a step (u(t) = 1 for 0 < ¢ < 100) is simulated and the response is plotted.
The task can be done using the following MATLAB code, that is available as file
lab2a.

#file lab2a.m
%Computer Laboratory 1 System Identification
%TS 920315. rev TS 950405. last rev KB 990201

% Transient analysis
clear
=-0.8;b=1;A=[1 a];B=[0 b];lambda=1;t=10;N=100;

e=randn (N, 100) *1lambda; u=[zeros(9,1);ones(91,1)];
yl=filter(B,A,u); y=yl*ones(1,100)+filter(1,A,e);
ym=mean(y’)’; yvar=std(y’)’;

subplot(211)

plot ([1:100], [y(:,1),y1])

axis([0 100 -2 8])

title(’Step responses’)

legend(’output y’,’noise free output’,4)

subplot (212)

plot([1:100], [ym,y1],[1:100], [ym+yvar,ym-yvar],’r--7)

axis([0 100 -2 81)

title(’Step responses, averaged over 100 simulations’)

legend (’mean output y’,’noise free output’,’standard deviation’,4)

Discuss briefly benefits and drawbacks with the step response analysis. Is it easy
to determine the system dynamics (e.g., time constants, static gain and resonance
frequencies) from the step response?

Answer:

2. Next we consider correlation analysis. Let the input u(¢) be white binary noise of
length N = 100, taking the values £1. Then use correlation analysis to estimate
the weighting function of the system for lags k = 1,...20. Compare with the true
values. The task can be done using the following MATLAB code, that is available
as file 1ab2b.
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#file lab2b.m
%Computer Laboratory 1 in System Identification
%TS 920315. rev TS 950405. last rev KB 990201

% Correlation analysis

clf, clear h hest

m=20, u=sign(randn(N,100));

y=filter(B,A,u)+filter(1,4,e);

for k=1:m, hest(k,1:100)=diag((y(k+1:N,:))’>*u(1:N-k,:))’/N;end
for k=1:m, h(k,1)=b*(-a)~(k-1);end

h_mean=mean (hest’)’;

h_var=std(hest?)’;

subplot (211)

plot ([1:20], [hest(:,1),h])

title(’Correlation analysis: weighting functions’)
xlabel(’time lag’)

legend (’Estimated’, *True’)

subplot (212)

plot([1:20], [h_mean(:,1),h],[1:20], [h_mean+h_var,h_mean-h_var],’r--7)
title(’Averaged over 100 simulations?’)

xlabel(’time lag’)

legend(’Mean of estimates’,’True’,’Standard deviation’)

Discuss briefly the results from the correlation analysis.

Answer:

3. Now repeat the previous task but for another input with a more low-frequency
character. Use the input signal

1
up(t) = oy —ge—ul), 2/1-0.8
~0.8¢

where the normalization wug will assure that uo(t) have the same variance as u(t).
Do not take any particular action in the identification algorithm though. The task
can be done using the MATLAB macro 1ab2c. This file is the same as lab2b,

except that we now use the input ug(t)
u2=filter(1,[1 -.8],u)*sqrt(1-.8"2);

It is clear from the figure that the estimate iz(k) in this case is severely biased.
Why is this so? (Hint: What is implicitly assumed when h(k) is estimated in the
macro 1ab2b? Compare with pages 42-43 in system identification.)
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Answer:

Remark: The bias problem above can be somewhat cured. One alternative is to
pre-whiten the input before applying the estimation scheme. This is implemented
in the MATLAB function cra. A second alternative is to solve the Wiener-Hopf
equation by assuming a truncated weighting function, see system identification page
43. This method is implemented in the MATLAB macro lab2c_2. Run the macro
to see that an “unbiased” estimate is obtained.

4. Next we will use data from the previous exercise and apply spectral analysis. The
resulting model in form of Bode plots are compared with the frequency functions
of the true system. The spectral analysis command spa is implemented with a
Hamming lag window of length M. Try various values of M.

The task can be done using the following MATLAB code, that is available as file
lab2d.

%file lab2d.m
%#Computer Laboratory 1 in System Identification
%TS 920315. rev MC 950109. last rev KB 000201

% Spectral analysis
M=input (’Give M ), clf

w=logspace(-2,pi);
for k=1:100,

z=[y(:,k),u2(:,k)];

gest=spa(z,M,w);

[tmpl tmp2]=bode(gest);

mest (1:50,k)=squeeze (tmpl) ;pest (1:50,k)=squeeze (tmp2);
end;
m_mean=mean(mest’)’; p_mean=mean(pest’)’;
m_var=std(mest’)’; p_var=std(pest?’)’;
[mtrue,ptrue]=dbode(B,A,1,w);

figure,clf

subplot (211)

loglog(w, [mest(:,1) ,mtrue,m_mean]), hold on

loglog(w, [m_mean+m_var,m_mean-m_var],’r--’), hold off
xlabel(’Angular frequency’),ylabel(’Amplitude’)
txt=[’Spectral analysis, M = ?, num2str(M)];

title(txt)

legend (’Estimate (one example)’,’True’,’Mean and std of 100 simulations’,3)
subplot (212)

semilogx(w, [pest(:,1) ,ptrue,p_mean]), hold on
semilogx(w, [p_mean+p_var,p_mean-p_var],’r--’), hold off
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xlabel(’Angular frequency’),ylabel(’Phase’)

title(txt);

legend(’Estimate (one example)’,’True’,’Mean and std of 100
simulations’,3)

Discuss how M affects the estimate, what is a reasonable value of M? Moreover,
how is the estimate affected by the fact that we use a low frequent input ua(t) ?
Would there be any difference if we used a white noise input u(t) instead ?

Answer:

2.2 Parametric Identification using the Least Squares Method

We now turn to the least squares method, which in contrast to the previous methods
gives a parametric model. The LS method is applicable to models of the form

A(g™Hy(t) = Blgu(t) + (1) (2.1)
which equivalently can be expressed as the linear regression model
y(t) = ¢" ()0 +(t) (2.2)

where

o () = [yt —1)--- —y(t —na) ult—1)--u(t —np)] (2.3)
0=1[a1-an, bi---by)

Under some weak assumptions the estimate is obtained as

P 3 Ty Ly 2.5
= [Ngw(t)so (t)] N;so(t)y(t) (2.5)

Preparation exercise 3. Find the theoretical limits (as N — o00) of the least-squares
parameter estimates for the systems Sy and Sz assuming the input u(¢) to be white with
zero mean and unit variance.

N N

nswer:
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In the first experiment we will use the same data (system &; and input us(t)) as before,
and the model structure

(1+aqg YHyt) = bu(t—1)+e(t)

6 = (@ bT

Compute the estimates and compare with the true parameter values. The task can be
solved using the file 1ab2e, see the print-out below.

Answer:

Also illustrate the obtained model by computing and plotting the frequency function.
What are your findings?

Answer:

#file lab2e.m

%Computer Laboratory 2 in System Identification
%TS 920315, rev TS 950405, rev KB 990201

%irev EKL 040525

% Least Squares Method

clear
a=-0.8;,b=1;,A=[1 a];,B=[0 b];,lambda=1;N=100;

e=randn (N, 100) *1lambda;
u=sign(randn(N,100));
u2=filter(1,[1 al,u)*sqrt(1-a~2);
y=filter(B,A,u2)+filter(1,A,e);
w=logspace(-2,pi);
for k=1:100,
z=[y(:,k),u2(:,k)];
th=arx(z,[1 1 11);
[aest ,best]=polydata(th);
Aest(k,1:2)=aest; Best(k,1:2)=best;
[mest (1:50,k) ,pest(1:50,k)]=dbode(best,aest,1,w);
end;
m_mean=mean(mest’)’; p_mean=mean(pest’)’;
m_var=std(mest’)’; p_var=std(pest’)’;
A_mean=mean(Aest), B_mean=mean(Best),
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A_var=std(Aest), B_var=std(Best),
[mtrue,ptrue]=dbode(B,A,1,w);

subplot (211)

loglog(w,mtrue,w,m_mean,’r’), hold on

loglog(w, [m_mean+m_var,m_mean-m_var],’r--’), hold off
txt=[’LS method Sys 1 Bode plots N=’,num2str(N)];
title(txt) ,xlabel(’Angular frequency’),ylabel(’Amplitude’)
legend(’True’,’Mean and std of 100 simulations’,3)
subplot (212)

semilogx(w,ptrue,w,p_mean,’r’]), hold on

semilogx(w, [p_mean+p_var,p_mean-p_var],’r--’), hold off
title(txt) ,xlabel(’Angular frequency’),ylabel(’Phase’)
legend(’True’,’Mean and std of 100 simulations’,3)

2.2.1 Low Freq. input /White Noise input for the System S;

Next we will see how the input signal can influence the estimate. We will feed the system
&1 with two different input signals:

e A white noise sequence. The input wu;(¢) is in this case white binary noise of length
N =100, taking the values +1.

e A low-frequent character sequence. The input us(t) is a low pass filtered version of
u1(t) according to

1
u2(t) = UOT&]_I’Ml(t), Ug 4 V1 -0.82

where the normalization ug will assure that us(t) have the same variance as uq (t).

Note that these two inputs are the same as have been used before. We will use the same
model structure as in the previous task, and compute the estimate by using the least
squares method. The results will be presented as frequency functions, by means of bode
plots. The exercise can be done using the MATLAB macro 1ab2f. This file has the same
basic structure as lab2e, so a print-out is therefore omitted.

Are the estimates consistent for both the inputs? More generally, in order to get consis-
tent estimates the input has to fulfill a certain condition, namely? (Hint: See Remark 2
on page 121 of system identification)

Answer:

By looking in the frequency domain, compare the estimates for the two different inputs.
In what frequency range are the estimates most accurate? Is there any difference for the
two different inputs? If so, why?
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Answer:

2.2.2 Low Frequent input / White Noise input for the System S

As a final exercise we will repeat the previous task but with the system S instead of
the system &;. The model structure is, however, still the same. Compute the parameter
estimates, and compare with the true values. Illustrate the results by means of frequency
functions. This task can be done using the MATLAB macro lab2g. This file has the
same basic structure as lab2e, hence a print-out is omitted.

By comparing with the previous task, what are your findings?

N N

nswer:




