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2 THEORY 1

1 Goals

In this computer laboratory we will investigate and compare different methods for system
identification (the least squares method, the prediction error method and the instrumen-
tal variable method). We will also examine some various approaches for model validation.

2 Theory

2.1 Identification Methods

The three identification methods, the least squares method, the prediction error method
and the instrumental variable method, are thoroughly described in the course book sys-
tem identification. Nevertheless, in this section we will shortly recapitulate some of the
important features of these methods.

1. The least squares method. The LS method is applicable to models of the form

Al Ny(t) = Blg Hu(t) +e(t) (2.1)
where ¢(t) denotes an equation error, or equivalently expressed as the linear regres-
sion model

y(t) = ¢" ()0 +(t) (2.2)

where
T () = [yt —1) - =yt —na) ult—1)--ut —np)] (2.3)
0=lar " an, by---bp,] (2.4)

The LS estimate, i.e., the estimate that minimizes the sum of squared equation
errors, is readily obtained as

0= [ e O] 5 > wtu (25)

Assuming that the true system dynamic is described as

Aolg™)y(t) = Bolg™")u(t) +u(t) (2.6)

where v(t) is a stationary stochastic process that is independent of the input signal,
it turns out that this estimate is consistent if

E{p(t)¢T(t)} is nonsingular (2.7)
E{ot)v(t)} =0 (2.8)

where the latter condition is quite restrictive. In fact, we must require v(t) to be
an uncorrelated disturbance (e.g. white noise) for the condition to hold.

2. The instrumental variable method. This method can be seen as a generaliza-
tion of the least squares method. The main idea is to modify the LS estimate, so it
is consistent for an arbitrary disturbance. We are still considering ARX structures
(2.1), but we modify the LS estimate (2.5), into

0= 206" 0] 5 20wt (29)
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where z(t) is a vector of instrumental variables that can be chosen in different ways
subject to certain conditions guaranteeing consistency. We will assume that the
data for the true system (2.6) is stationary. If we chose z(t) to be uncorrelated
with the disturbance v(t), and R £ E{z(t)¢” (t)} has full rank, then it holds that
the estimate (2.9) is consistent. The rank condition is satisfied for almost any, but
not all, systems. A common way of chasing the instruments is as follows

2(t) = [t —1)---n(t —na) u(t—1)---u(t —np)]" (2.10)
where the signal 7(t) is obtained by filtering the input

Clg " )n(t) = D(g u(t) (2.11)

The polynomials C' and D can be chosen in many ways. One special choice is to
let C and D be a priori estimates of A and B, respectively (obtained, for instance,
by using the LS methods; this is implemented in the MATLAB file iv4). Another
special case is C(¢ ') =1 and D(q~!) = —¢ ™.

3. Prediction error methods This methods can be applied to the general linear
parametric model

y(t) = G(g™", 0)ult) + H(g™", 0)e(t) (2.12)
Efe(t)e” (s)} = A(6)dy,s (2.13)

The main idea is to determine the model parameter vector #, so that the prediction
error

e(t,0) = y(t) — g(tlt — 1,0) (2.14)
is small. Here §(t|t — 1,0) denotes the mean-square optimal prediction of y(¢).

To define a prediction error method the user has to make the following choices:
Chose a model structure, i.e., parameterize G, H and A, as a function of 8. Chose
a criterion function, i.e., decide upon a scalar-valued function of all the prediction
errors; this criterion is to be minimized with respect to #, in order to find the
desired estimate.

The prediction error methods can be shown to (under weak conditions) be consis-
tent, and statistically efficient. However, the methods require the computation of
the prediction errors, and they (often) rely on a numerical minimization, with the
possibility of getting stuck in local minima.

2.2 Model Validation

The parameter estimation procedure picks out the “best” model within the chosen model
structure. The crucial question then is whether, or not, this model is “good enough”.
This is the problem of model validation. In this computer laboratory we will consider
the following model validation techniques:

1. Residual analysis. The “leftovers” from the modeling process, i.e., the part of
the data that the model could not reproduce are the residuals

e(t) = y(t) — §(t1dn) (2.15)

It is clear that these bear information about the quality of the model. Ideally, the
residuals should be an uncorrelated sequence. However, to decide whether they are
correlated, or not, can be difficult by just looking at them. Moreover, one can gain
much more insight by combining the residuals with other signals. Therefore, it is
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more common to do some testing based on the sample covariance functions 7, and
Tew, Wwhere u(t) is the input signal. In the ideal case, these covariance functions
should be zero (the obvious exception is, of course, the covariance element r.(0)). If
there are correlation between past inputs and the residuals, then there is a part of
y(t) that originates from the past input and that has not been properly picked up
by the model, e.g., a clear peak at lag k indicates that the effect from input u(t— k)
on y(t) is not properly described by the model. A rule of thumb is that a slowly
varying cross correlation function outside the confidence region is an indication of
too few poles, while sharper peaks indicates too few zeros or wrong delay. Similarly,
a large 7 means that y(¢) could have been better predicted, which again is a sign
of deficiency of the model.

2. Fit between simulated and measured output. Compare the “measured” out-
put y(t) and the model output y,,(t). For a good model they should, of course,
resemble each other (To what degree?). This comparison should be done using both
the estimation data set and a validation data set. Use of the latter data set gives
an indication if the model is capable of describing new data, i.e., in some sense it
gives information about the robustness of the model.

3. Using various test criteria. Check the numerical values of the loss function
Vn(0x), as well as the validation criteria AIC and FPE, as functions of the model
order n. As your final value choose the value op n that minimizes these criteria.
However, in practice one should use these tests with care . For example, the loss
function is a monotonically decreasing function with respect to n. Hence, this
test will generically indicate that a very “large” model order (usually too large)
should be selected. In the AIC- and FPE tests some cure of this plausible over-
parameterization is provided by introducing a complexity term that increases with
n; still, neither the AIC, nor the FPE estimates of the order are consistent. Nev-
ertheless, instead of searching for the global minimum of the above mentioned
functions it is usually a better idea to choose the n, for which the functions make
a “large” drop, as your final model order.

4. Pole—zero cancellations. Compute and plot the poles and the zeros of the mod-
els, with confidence regions. If pole—zero cancellations (almost) occurs, it is a sign
that the model order has been chosen unnecessarily high. In particular, if it turns
out that the order of ARX models has to be increased to get a good fit, but that
pole—zero cancellations are indicated, then the extra poles are just introduced to
describe the noise. Then try another model structure e.g. ARMAX.

Preparation exercise 1. This exercise aims at illustrating the parsimony principle,
which is a rather useful rule when determining an appropriate model order. This principle
says that out of two or more competing models, which all explains the data well, the
model with the smallest number of independent parameters should be chosen.

Consider the following stable AR(1) process

S y(t) +aoy(t —1) =e(t) (2.16)

where e(t) is white noise with zero mean and variance A?. Also, consider the following
two models of S:

My y(t)+ay(t—1) =e(t) (2.17)
Mo: () +ary(t —1) + ay(t — 2) = e(t) (2.18)

Let @ and a; denote the LS estimate of @ in M and a1 in Ms. Determine the asymptotic
estimation error variances for @ and a; (var(a) and var(a,)), and show that var(a) <
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var(d,). Hint: For a linear regression
y(t) = o7 (t)0 + &(t) (2.19)

it asymptotically holds that

-1

cov(0) = X2 [B p(t)g” (1) (2.20)

Further, for the system S the covariance function r(7) = Ey(t + 7)y(t) fulfills (1) =
(—ag)"roA? with 7o = 1/(1 — a?).

(a N

nswer:

o )

3 Tasks

3.1 The System
The system that we will identify is given by

(1-1.5¢7" +0.7¢7)y(t) = (1.0g7" + 0.5¢")u(t) + (1 — 1.0¢" + 0.2¢72)e(?)

where the input signal is binary white noise (u(t) = £1), independent of the white noise
e(t), which has zero mean and variance A2 = 1. Simulate the system using N = 250
data points. This can be done using the MATLAB function gendata. Actually the file
generates two sets of data; one set used for estimation and one set intended for validation.
For an adequate comparison between the different estimation schemes it is important that
the same set of data is used all the time.

3.2 The Least Squares method

First we will try to fit an ARX model of order n to the simulated data using the least
squares method. We will try different values of n (say n =1,...,6). Validate the models
using the different techniques 1-5, described in Section 2.2.

The task can be carried out by running the MATLAB code 1ab3a, described in Appendix
A.

What are your findings?
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a N

nswer:

o /

3.3 The Prediction Error Method.

Repeat the previous task but now use the prediction error method applied with an AR-
MAX model of order n. Use the same data set as before. Try some values of n, say
n=1,...,6. Apply the same validation procedures as before.

The MATLAB file 1ab3b solves the task.

What are your findings?

4 )

nswer:

N /

3.4 The IV Method.

Repeat the previous task but now use an instrumental variable method applied with an
ARX model of order n. Use the same data set as before. Try some different values of n,
say n = 1,...,6. Apply the same validation procedures as before. However, in this case,
the criteria V', AIC, FPE are not theoretically supported, hence, use these tests with
caution. Replace otherwise the residuals in the validation tests by the equation errors.
The MATLAB file 1ab3c solves the task. Notice that this function uses the MATLAB
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macro ivé4, shortly described in section 2.1, to estimate the parameters.

What are your findings?

a N

nswer:




A MATLAB CODE

A

MATLAB code

hlo oo loToToToToToTo oo oo o oo o o 1o 1o 1o T To T To o oo o

% Gendata /A

Dol to oo to o Toto o Toto o oo oo To o o To T o o o o o o o Jo o o

np=250

a0=[1 -1.5 0.7], b0=[0 1 .5], cO=[1 -1.0 0.2],
s2=1, 12=1

u=sign(randn(2*np,1))*sqrt(s2); e=randn(2*np,1);

th=idpoly(a0,b0,c0,1,1,12);

y=idsim([u e],th);

uv=u(np+1:end) ;ev=e(np+1l:end) ;yv=y(np+l:end);
u=u(1:np);e=e(l:np);y=y(1l:np);

ze=iddata(y,u) ;zv=iddata(yv,uv);

llolololoToToToToToTo oo oo o o o o o To 1o ToToToToTo o T o o o o oo oo Fo o To T To T To o Tl o

% file lab3a.m

% Use of LSM (ARX model)

%Computer Laboratory 3 in System Identification

#TS 920315, rev TS 950405, rev KB 000211, rev EKL 010110
%rev EKL 040525

Tl tololoToToToToToTo oo oo o o o o o To 1o To T To To To o Tl o o o oo oo Fo o To T To T To o T o o

clf
format compact

nlag=10;resl=[]; plsm=[]; zlsm=[];
np=length(y) ;
nmax=6;
for n=1:nmax,
thatl=arx(ze,[n n 1]);
Doloto o Toto o Toto o Toto o Toto o fo To o To To 1o o To 1o o To to o To 1o o Jo o o Jo o o o o o Jo 1o o o o o o T o o o o o To o o To o

% Change the above command to use prediction error method %

% or instrumental variable method according to b
h h
% thatl=armax(ze,[n n n 1]); %
% thatl=iv4(ze,[n n 1]1); %
% (or use thatl=iv(ze,[n n 11,1, [zeros(1i,n),1]);) %

TototoTotoToto Toto o Toto Toto o To o Joto Yoo o o o Jo o o o o o o Yo o o o o Yo to o o o o o Jo o o o o o o Fo o o o o o o o o
eval([’TH? num2str(n) ’=thatl;’]); % to save thatl for n=1:nmax
4present (thatl);

[compl(n),fit1(n)]=compare(ze,thatl);

[comp2(n) ,fit2(n)]=compare (zv,thatl);
V(n)=thatl.EstimationInfo.LossFcn;
FPE(n)=thatl.EstimationInfo.FPE;

AIC(n)=log(V(n))*np+2*2*n;

% Modify the AIC for ARMAX because we have n more free variables!
% i.e. AIC(n)=log(V(n))*np+3%2#n;
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format short
end;

echo on
%b) Testing based on the covariance functions of the residuals
echo off
for n=1:nmax
eval([’resid(TH’> num2str(n) ’,ze);’]1);
subplot(211)
txt=[’autocorrelation of residual e, n=’,num2str(n)];
title(txt)
subplot (212)
txt=[’crosscorrelation between e and u, n=’,num2str(n)];
title(txt)
pause
end;

echo on

%c) measured output and model output

% for the estimation data set.

echo off

mm=min([100 np]l);

for n=1:nmax
subplot (320+n) ;
plot(1:mm, [compl{n}.y(1:mm),y(1:mm)]);
title([’n = ?,num2str(n),’ Fit :’,num2str(fiti(n))]1);
legend(’y_m’,’y’,0)

end;

pause

echo on

% measured output and model output

%  for the validation data set.

echo off

for n=1:nmax
subplot (320+n);
plot(1:mm, [comp2{n}.y(1:mm) ,yv(l:mm)]);
title([’n = ?,num2str(n),’ Fit :’,num2str(fit2(n))]);
legend(’y_m’,’y?,0)

end;

pause

echo on

%d) loss function, AIC and FPE

echo off

clf

subplot (311)

plot(l:nmax,V), title(’loss function’), xlabel(’n?)
subplot (312)

plot(1:nmax,AIC), title(’AIC’), xlabel(’n’)

subplot (313)

plot(1l:nmax,FPE), title(’FPE’), xlabel(’n’)
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pause

clf

echo on

%e) pole-zero plot with confidens regions

%  corresponding to 3 standard deviatioms.

echo off

for n=1:nmax
eval ([’zpplot(TH’ num2str(n) 2,3);°]1);
title([’Poles and zeros ARX, n = ’,num2str(n)])
pause

end



