Uppsala University
Information Technology
Dept. of Systems and Control
Torsten Séderstrom 1992
Revised JS

Revised EKL 0101

System Identification

Computer exercise 4

Recursive Identification and
some Practical Aspects

Preparation exercises:
1. Study Chapters 9, 10 and 12 of System Identification.

Also, read the instruction carefully and browse the MATLAB code.
2. Solve preparation exercise 1.

Name Assistant’s comments
Program Year of reg.

Date

Passed prep. ex. Sign

Passed comp. ex. Sign

2 RECURSIVE IDENTIFICATION 1

1 Goals

In this computer laboratory we will study some features of recursive identification, as
well as some practical aspects of system identification, including:

e System identification as a way of model approximation, when the model structure
is not rich enough to describe the true dynamics.

e Estimation of physical parameters.

2 Recursive Identification

In recursive identification methods, measured input-output data are processed recur-
sively (sequentially) as they become available, i.e., the model is based on observations
up to the current time. Recursive identification, also referred to as on-line or adaptive
identification, is used in various areas, such as: adaptive systems, fault detection and
parameter-tracking. Most off-line (batch) algorithms can be converted (exactly or ap-
proximately) into a recursive counterpart in a straightforward manner. Moreover, in
many cases there is a need to modify the algorithms so that time-varying dynamics can
be tracked. Two approaches for such modifications are:

e Change the loss function to be minimized. For instance, for the least squares
method we can modify the loss function according to

Vi(6) =) AToe%(s) (2.1)

where A is known as a forgetting factor. This means, as an example, that measure-
ments that are older than Ty = 1/(1 —) are included in the criterion with a weight
that is & 36% of that of the most recent measurement (7j is called the memory
time constant).

e Model the parameter variations as a state space model (e.g. a random walk), and
apply Kalman filtering techniques.

The first approach will be illustrated in this lab, while the second technique is covered
in one of the homework assignments.

2.1 General Comparison

The following system is to be simulated:
(1—0.7¢7 Hy(t) = 0.8¢ Lu(t) + (1 — 0.7¢" L)e(t)

where u(t) and e(t) are uncorrelated white noise sequences with zero mean and unit
variance. Identify the system using the following estimation methods: recursive least
squares (RLS), recursive instrumental variable (RIV), recursive pseudo linear regression
(RPLR) and recursive prediction error methods (RPEM). For RLS and RIV the model
structure is

y(t) +ay(t —1) =bu(t — 1) + e(t)

6= (ab)?
For RPLR and RPEM the model structure is

y(t) +ay(t —1) =bu(t — 1) +e(t) + ce(t — 1)

2 RECURSIVE IDENTIFICATION 2

0=(abc)T
The task can be carried out using the MATLAB function lab4a. For a print-out see
Appendix A.

What can you say about the performance of the methods? Especially, give comments
about consistency and convergence for the different methods.

4)

nswer:

N /

2.2 Effect of the initial values

We will here study how the choice of the initial P matrix influences the estimate. The
following system is to be simulated

y(t) — 0.9y(t — 1) = 0.5u(t — 1) + e(t) (2.7)

where u(t) is a white binary sequence uncorrelated with the white noise sequence e(t),
which has zero mean and variance 1. Identify the system using RLS and a first-order
model

y(t) +ay(t — 1) =bu(t — 1) + &(t) (2.8)

P=) ((1) ?) (2.9)

Run the file 1ab4b (a print-out is given in the appendix). How does p influence the result?

(s)

nswer:

The P matrix is initialized by

3 MODEL APPROXIMATION 3

2.3 Effect of the forgetting factor

Next, we will study how the forgetting factor affects the estimate. In particular we will
study the problem of tracking a time varying system. Consider a first order ARX system
which makes an abrupt change at time ¢t = 100.

1.5 t<100

(2.10)
0.5 ¢> 100

y(t) - 0.8y(t - 1) = bou(t) + e(t) b() = {
Run the MATLAB function lab4c to identify the system using a RARX method with
different forgetting factors. Describe the trade off which has to be made when choosing
the forgetting factor. Study also if the estimated a parameter is negatively affected by a
low forgetting factor.

N N

nswer:

o /

3 Model Approximation

In this task we will examine how system identification can be viewed as a form of model
approximation, when the system dynamics is too complex to belong the model structure
considered. To simplify the study we consider a noise—free situation. Consider the
following system, which has two distinct resonances.

1.0g72 —1.3¢73 4+ 0.8¢7*

—1 _
Golg ") = (1-1.5¢ 1 +0.9¢2)(1 + 0.9 2)

Simulate the system using the input u(t) as white binary noise of zero mean and unit
amplitude. Use the function gendata2, listed in the Appendix, to generate 100 data
points. Next, we will estimate the system above as a second order ARMAX model
(denoted by G(g!,6)), by means of a prediction error method using prefiltered data

y"(t) = F(q~")y(t) (3.2)

The filtering has the effect that we give emphasis to certain frequency ranges, depending
on the choice of the filter. In fact, one can show that the parameter vector 6 is determined
as the minimizing element of

V(o) Z/IF(ei“’)l2lGo(ei°’)—G(eiwﬁ)l%u(w) dw (3.3)

where ®,(w) is the spectral density of the input signal. This means that |F(e*)[2®,(w)
weights in what frequency region the deviation |Go(e™) — G(e™?)| will be penalized.
Hence, by adjusting the prefilter, the user can directly influence the model fit in different
frequency regions. The following tasks is to be considered:

3

4 EXTRA: ESTIMATION OF PHYSICAL PARAMETERS 4

1. Identify the system for F(¢g~!) = 1. This task can be carried out by running the
MATLAB function 1ab4d. The result is evaluated in the frequency domain by
drawing Bode plots of the model, the filter and the true dynamics.

2. Let F(q~!) be a sharp bandpass filter around one of the resonance frequencies of
the system. Use a 5’th order Butterworth filter. The MATLAB function filtdes
can be useful when designing the filter. Once the filter is designed (numerator
and denominator stored in nn and dd, respectively. This is automatically done by
filtdes) run lab4d to perform the estimation procedure.

3. Repeat the previous task but for a filter with emphasize on the other resonance
frequency.

4. Repeat the previous task but let F' be a low pass filter.

Summarize your findings below

a N

nswer:

N /

4 Extra: Estimation of Physical parameters

Note: Do this exercise if you have the time. It might be useful in your future career to
know how to estimate physical parameters.

In this section, we shall now see how system identification can be used to estimate physical
parameters. As an example we will consider a DC motor. Its (continuous-time) transfer
function from voltage to angular position, is given by

K
G0 = S

where K and T are the parameters to be determined. By choosing the angular position
and velocity as state variables, we can represent the motor in state space form as

v o= g —11T>$+<K0T>u
(0 e) (s
()

We are interested in estimating the parameters K and T from discrete-time measurements
of the velocity and the position. This is done is the MATLAB demo number 6. Run the
demo, and see how this quite complex problem can be solved by using MATLAB and

4

A MATLAB-CODE 5

theory covered in the SI course. To run the demo, just type iddemo at the MATLAB
prompt and choose number 6, Building structured and user-defined models. Focus on the
first part of the demo (1 Free Parameters). The second part (2 Coupled parameters) is,
however, also of interest.

A MATLAB-Code

%** General comparison.
Yok ks ko ok ok Kok ok ok ok ok ok K
clear;
N=input (’Number of samples N (RETURN gives N=250): ’);
if (isempty(N)), N=250;end
u=randn(N,1); e=randn(N,1);clf;
=-0.7; b=0.8; A=[1 a]; B=[0 b];
%av=a*ones (N, 1) ;bv=b*ones(N,1);
y=filter(B,A,u)+e; z=[y ul;

%** RLS.

VARZIZ I L

nn=[1 1 1];

thm=rarx(z,nn,’ff’,1);

a_vec=-0.7*ones(N,1); b_vec=0.8*ones(N,1);

subplot(2,2,1);
plot([1:N],thm(:,1),%y’,[1:N],thm(:,2),’m’,[1:N],a_vec,’r’,[1:N],b_vec,’r’);
axis([0 N -2 2]); grid; title(’RLS’);

%*x RIV.

VARZIZ I L

P=10000%*eye (2) ;

th=[0; 0];

thmat=th;

for i=3:N
phi=[-y(i-1); u(i-1,1)]1;
Z=[u(i-1,1); u(i-2,1)1;
P=P-P*Zxphi’*P/(1+phi’*P*Z) ;
ee=y(i)-phi’*th;
th=th+P*xZx*ee;
thmat=[thmat th];

end

subplot(2,2,2);

plot ([1:N-1],thmat(1,:),’y’,[1:N-1],thmat(2,:),’m’,[1:N],a_vec,’r’,[1:N],b_vec, ’r

axis([0 N -2 2]); grid; title(’RIV’);

%** RPLR.

%% 3k ok 3 ok k ok ok

nni=[1 110 0 1];

thml=rplr(z,nnl,’ff’,1);

subplot(2,2,3);

plot ([1:N],thmi(:,1),’y?,[1:N],thmi(:,2),’m’,[1:N],thm1(:,3),%c’,[1:N],a_vec,’r’, |
axis([0 N -2 2]); grid; title(’RPLR’);

A MATLAB-CODE 6

%** RPEM.

YARE LT L

thm2=rpem(z,nnl,’ff’>,1);

subplot(2,2,4);

plot([1:N],thm2(:,1),%y?,[1:N],thm2(:,2),’m’, [1:N],thm2(:,3),’c’,[1:N],a_vec,’r’,
axis([0 N -2 2]); grid; title(’RPEM’);

Tt ot ot To o to o to o T fo o Toto Toto Toto Toto Jo o o o o o o o o o T o Fo o Fo o o o
%** lab4db.m: Effect of the initial values.
O e ks sk ok ok o ok sk skok ok ok o ok sk sk ok ok ok ok o ok ok sk ok ok o o Kok ok ok
clear; clf

N=250; e=randn(N,1);

%** Generate input
O sk sk ok ok ok ok ok ok koo sk sk sk sk ke ok

u=sign(randn(N,1));

J** Simulate system.

O stk ok o sk sk o ook sk ok o ok ok ok ok

a=-0.9; b=0.5; A=[1 a]; B=[0 b];
y=filter(B,A,u)+filter(1,A,e);

%** Using RLS with different initial values of rho.
nn=[1 1 1];

z=[y ul; th0=[0 0];

=-0.9%ones(N,1); b=0.5%ones(N,1);

%** rho=0.01.

ok kkkokok ok ok ok ok

P01=0.01%eye (2) ;
[thml,yhat,P]=rarx(z,nn,’ff’>,1,th0,P01);
subplot(2,2,1);

plot ([1:N],thm1, [1:N],a,’k?,[1:N],b,’k?);
axis([0 N -1 1]); title(’rho=0.017);

%**x rho=0.1.

Tooke sk ok ok ok ok ok ok

P02=0.1*eye(2);
[thm2,yhat,P]=rarx(z,nn,’ff’,1,th0,P02);
subplot(2,2,2);

plot ([1:N],thm2,[1:N],a,’k?,[1:N],b,’k’);
axis([0 N -1 1]); title(’rho=0.17);

%** rho=1.

ok Ak ok kok ko

PO3=1*eye(2);
[thm3,yhat,P]=rarx(z,nn,’ff’,1,th0,P03);
subplot(2,2,3);

plot ([1:N],thm3,[1:N],a,’k?,[1:N],b,’k?);
axis([0 N -1 1]); title(’rho=17);

%** rho=10.

A MATLAB-CODE

Tk kkkok ko ok k

P04=10x*eye(2);
[thm4,yhat,Pl=rarx(z,nn,’ff’,1,th0,P04);
subplot(2,2,4);

plot ([1:N],thm4,[1:N],a,’k?,[1:N],b,’k?);
axis([0 N -1 1]); title(’rho=10’);

TotoToto ot To o to o to o to fo o To o Toto Toto Toto Jo o o o To o o o o o T o Fo o Fo o o o
%** labdc: effect of the forgetting factor.
%k ek sk ok ok o ok ok sk ok skok o sk ok sk ok skok ok ok o ok sk skok ok ok o o kK ok sk ok o
clear;

N=200;

u=sign(randn(N,1));e=randn(N,1);

B1=[0 1.5];A=[1 -.8];
[yl,xx]=filter(B1,A,u(1:N/2));

B2=[0 .5];
y=[yl;filter(B2,A,u(N/2+1:N),xx)]+filter(1,A,e);
zl=[y ul;

%hidplot(zl);

nn2=[1 1 1];
th0=[0 0]; PO=1*eye(2);
c_vec=[1.5%ones(N/2,1); .5%ones(N/2,1)]; d_vec=-.8*ones(N,1);
lam=input (’Give lambda [11 12 13] (RETURN = default): ’);
if (isempty(lam)), lam=[1 .95 .85];
elseif (length(lam)~=3)
error(’> Wrong input’);
end

%** lambda=1.

%, 3 3k sk e ok k ok ok 3k ok k ok

[thm3,yhat,P]=rarx(z1,[1 1 1],°ff’,lam(1),th0,P0);
subplot(3,1,1);

plot ([1:N],thm3,[1:N],c_vec,’r’,[1:N],d_vec,’r’);

text (210,1.2,°b?)

text (210,-1.3,%a?)

axis([0 N -2 2]); grid; title([’lambda=’,num2str(lam(1))]);

%** lambda=0.97.

O ek sk skok ok o ok sk sk ok ok ok
[thm4,yhat,P]=rarx(zl,nn2,’ff’,lam(2),th0,P0);
subplot(3,1,2);

plot([1:N],thm4, [1:N],c_vec,’r’,[1:N],d_vec,’r?);

text (210,1.2,°b?)

text(210,-1.3,%a?)

axis([0 N -2 2]); grid; title([’lambda=’,num2str(lam(2))]1);

%** lambda=0.90.

% sk sk ok ok o ok ok sk ok ok ok

[thmb,yhat ,P]=rarx(z1,nn2,’ff’,1lam(3),th0,P0);
subplot(3,1,3);
plot([1:N],thmb5,[1:N],c_vec,’r’,[1:N],d_vec,’r?);

A MATLAB-CODE 8

text (210,1.2,°b?)
text (210,-1.3,%a?)
axis([0 N -2 2]); grid; title([’lambda=’,num2str(lam(3))]);

Todo o TotoToto Toto o Toto Toto o To o Joto Fo o o To o Yo o o o o o o o o o o 2o o o o o o
%** gendata2

Of ok sk sk ok sk ok ok o sk ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok sk o sk sk o sk sk o sk ok ok
num=[0 0 1 -1.3 .8];

den=conv([1 -1.5 .9]1,[1 0 .9]);
[msys,psys,w]=dbode (num,den,1);
u=sign(randn(100,1));

y=filter(num,den,u);

z=[y ul;

nn=1;dd=1;

#file lab4d.m
%Computer Laboratory 3
%System Identification
%TS last rev 950405

% Model approximation -- frequency domain effects
clf

echo on

% In order to run the file, the following variables must exist:
h

% The input (u) and output (y) and the magnitude

% (msys) and phase (psys) of

% the system transfer function for the frequencies (w).

% All given by the file gendata3.

h

% Filternumerator (nn) and filerdenominator (dd), which can

% be provided by the function filtdes.

Tl ool ol ToToTo o ToToToToTo T to o o 1o 1o o o o oo o o o o o Jo o T T T T T T o o o o o o o oo oo o o o o o o T T T T T T o o
echo off

J#Estimation based on filtered data

filtnum=nn;%input (’Give filtnumerator with [] ?)
filtden=dd;%input (°Give filtdenominator with []1 ?)

yf=filter(filtnum,filtden,y);
uf=filter(filtnum,filtden,u);
thatl=armax([yf uf],[2 2 2 1]);

[m1,pl]l=bode(thatl,w) ;ml=squeeze(ml) ;pl=squeeze(pl);
[mf ,pf]l=dbode(filtnum,filtden,1,w);

format short

subplot (121)

loglog(w,ml,w,msys,’--’,w,mf,”:?)
title(’Frequency functions’);

xlabel(’Angular frequency’); ylabel(’Amplitude’);

A MATLAB-CODE

mmax=max (max (m1) ,max (max (msys) ,max (mf)))+10;
axis([0.1 10 0.1 mmax])
legend(’Est’,’Sys’, ’Filt’,0)

subplot (122);

semilogx(w,pl,w,psys,’--?); hold off;
title(’Frequency functions’);
ylabel(’Phase’) ,xlabel(’Angular frequency?’)

