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1 Introduction

There are several (good) methods for computing covariance functions for a given
model. In a general setting, the problem can be stated as follows. Consider two
ARMA processes

y(t) = ——Selt)  w(t) = 5-Se(t) (1.1)

driven by the same white noise sequence {e(t)} of zero mean and variance A\>. Then
compute the cross-covariance function

ryw(T) = Ey(t + 1)w(t) (1.2)

for one or more (problem-specific) time arguments 7.

Many problems of covariance calculations can be reduced to the above form (cf
Example 2, to follow).

Occasionally, one has instead to evaluate a “deterministic expectation” such as

—00

ryu(7)2 lim %;y(tnLT)u(t) (1.3)

where u(t) is a given deterministic signal and y(¢) a filtered version of u(t). We
will consider such a case in Example 5 below.

2 Examples

In this section, we introduce some examples of covariance function evaluations. In
sections to come, we will describe some different methods for covariance compu-
tations and the same examples will be used for illustration and comparison.

Example 1. Let y(¢) be an AR(1) process
y(t) +ay(t — 1) = e(t) la] <1

We seek the (auto-)covariance function ry(7) for 7 = 0,1,2. Hence, in (1.1), we
have C=F =¢q, A=D = (¢ + a). O



Example 2. Let u(t) be an AR(1) process
u(t) + du(t — 1) = v(t) ld| <1

where v(t) is white noise and let u(¢) be the input and y(¢) the output of a first
order stable system

y(t) +ay(t—1) = bu(t — 1) la| <1

Seek the cross-covariance 7y, (7) for 7 = 0, 1. To phrase this example in the setting
of (1.1), we set
Clg) _ b Flg) _ 1

Alg)  (¢+a)(g+d) D(g) q+d

We further have e(t) = v(¢t + 1), which of course is a white noise sequence. Note
that it is important to have e(t) white in (1.1). O

Example 3. Let y(t) be an MA(2) process
y(t) = e(t) + cre(t — 1) + coe(t — 2)
and seek the autocovariance function of y(t), i.e. r,(7), for all 7. O

Example 4. Let y(t) and w(t) be two correlated AR(1) processes,

y(t) +ay(t—1) = e(t)
w(t)+dw(t—1) = e(t)

and seek the cross-covariance function r,,(7) for all 7. Note that Example 1 will
be a special case (namely, corresponding to d = a). O

Example 5. Here comes a “deterministic” problem. Let u(t) be a step of size o
and y(t) the output of the asymptotically stable system

The output will then converge to 7 = So, where S = B(1)/A(1) is the static gain
of the system. The deviation y(t) —7 will be a transient that decays exponentially
and it will give no contribution to covariance functions such as 7y, (7) and 7, (7).
In this example, we get for any finite 7

Tyu(T) = So?
ry(T) = S22



3 Method 1 - Division

This approach is difficult to apply for examples of order 2 or higher. The basic
idea is as follows. Divide the polynomials in (1.1), or expressed differently, rewrite
the models into weighting function form. Let us assume

o) = Gl

= hee(t) + hie(t — 1) + hae(t —2) + ...
= 2 hye(t = j)

wlt) = Fﬁ‘g (0

= koe(t) + kie(t — 1) + koe(t — 2) + ...

= Z ]et—j

Noting that e(t — i) and e(¢t — j) are uncorrelated if i # j, we get

Eyt)w(t) = Elhok.e*(t)]+ E[hikie®(t —1)] + ...

= Zhjk‘jE€2(t — j) = AQ Zh’jkj

J=0 J=0

Example 1. We get in this case

C(q): q _ 1 142072 — GBS
Alg) gq+a 1+4ag!

Note that due to the stability assumption, |a| < 1, and the series converges. We

have also (o) N
9 _ S (Vg
Do) ~ 2

For the case 7 = 0, we get

ry(0) = Ele(t) —ae(t — 1) + a’e(t —2) +...]le(t) —ae(t — 1) +.. ]
/\2

:)\(1+a+a+ ) 1_7012

while the cases 7 =1 and 7 = 2 are handled as

r,(1) = Ele(t+1)— ae(t) +a’e(t —1)+...]le(t) —ae(t —1)+.. ]




r,(2) = Ele(t+2)—ae(t+1)+d’e(t) —ae(t—1)+...]
x[e(t) —ae(t — 1)+ ae(t —2) +.. ]
= )\ (a +CL +. ) 1_7)\&2
O

Example 2. As this case corresponds to a second order filter, the division ap-
proach is a bit cumbersome. We have

b

bo 21 —ag ' + a2 2 —ata + ...
CEICET) g ‘[l—aq " +a’q a’q ]

x[1—dqg ' +d?°q2—d’q¢ > +..]
= bg 14+ hig '+ hog 2+ hsg®+..] (say)

Then the weighting function coefficients (normalized with bg—2 as above) are given
by

b = (—a)* + (—a)* " (—d) + ...+ (~d)ft = °

We then get

ryu(0) = Elbe(t —2) + bhie(t — 3) + bhoe(t —4) +.. ]
x[e(t — 1) — de(t — 2) + de(t — 3) +.. ]
= N(=bd)[l — dhy + d’hy + .. ]

= —%dAﬁl—-—g—{@%w2—(—dV}*‘ d2a{0%03—(—df}+v-l
— —bd)\z[l + _{Z z—|—1}+ Zd%-i—l]
5 —a ad d?
= —haNll+ o7 1—ad  (d= XLJN
_ ;%2(1_m&1_&ﬂu—@ﬂ—a®0—d%

—a*d(1 — d®) + d*(1 — ad)]
—bd \?
(1—ad)(1—d?)

ryu(l) = Ebe(t — 1)+ bhye(t — 2) + bhae(t — 3) + .. ]
x[e(t — 1) — de(t — 2) +d’e(t —3) +...]
= bA\’[1 —dhy +d’hy + .. ]
= 1yu(0)/(=d)
b2
(1—ad)(1 — &)




Example 3. The model is already in a weighting function format. As e(t) and
e(s) are independent when t # s, we get

ry(0) = Ele(t) + cre(t — 1) + coe(t — 2)]?
= N1+ +c)

ry(1) = Ele(t+1) + cie(t) + coe(t — 1)][e(t) + cre(t — 1) + coe(t — 2)]
= )\2(61 + 0201)

ry(2) = Ele(t+2)+ cre(t+ 1) + coe(t)][e(t) + cre(t — 1) + coe(t — 2)]
= )\262

It is clear that we also get

ry(T) =0 if 7>2

Example 4. As in Example 1, we have in this case

y(t) = e(t) —ae(t—1)+a’e(t—2) —ae(t—3)+...
w(t) = e(t) —de(t—1)+d%e(t —2) —d’e(t —3) +...
Hence
1-ad

Tyw(0) = Ey(t)w(t) = \2(1 + ad + a*d® + ...)
Ifr>0
ryw(T) = Ele(t+7)—aet+7—1)+...+ (—a)e(t) + (—a) et —1)+...
x[e(t) — de(t — 1) + d*e(t — 2) + .. ]
/\2
1—ad

= XN(—a) [l +ad+d’d*+...]=(—a)

Tyw(=T) = Ele(t) —ae(t—1)+d’e(t —2) +...]
x[e(t+7) —de(t+7—1)+ ...+ (=d)"e(t) + (=d) " e(t — 1) +.. ]
AZ
1—ad

= N(=d)'[l+ad+d’d®*+..]=(=d)"

4 Method 2 - Yule Walker equations

4.1 The basic approach

The basic idea is to multiply the model by delayed signals y(t—7), w(t—7). Taking
expectations, one will then get some linear equations in the covariance equation.
We omit the details for the general case. The procedure is simple for pure AR
processes and more involved for full ARMA processes.



Example 1. Multiplying the model by y(t) gives
ry(0) + ary(1) = Ey(t)e(t)

Noting that y(t) = e(t)+ sum of older e(t)’s gives Ey(t)e(t) = A\?. Multiplying the
model by y(t — 1) gives
ry(1) + ary(0) =0

as y(t — 1) is independent of e(t). We now solve the linear system of equations

(5 (30)-(7)

A2 —a\?
WO = =

with the solution

Multiplying the model with also y(t — 2) gives finally
ry(2) +ary(1) =0

from which we easily get

Example 2. The models can be written as

yt)+ (a+d)y(t — 1)+ ady(t —2) = be(t—2)
w(t)+dw(t—1) = e(t—1)

Multiplying the first equation with w(t — 1) and the second with y(¢) and y(t —1)
generates the equations

Tyw(1) + (a + )7y (0) + adry,(=1) = bEw(t — 1)e(t — 2)
Tyw(0) + dry, (1) = Ey(t)e(t —1)
Tyw(—1) +dry,(0) = Ey(t—1)e(t —1)

Next, we must determine the right hand sides of these equations. Then recall that

y(t) = be(t—2)+ older e(t)'s
w(t) = e(t—1)+ older e(t)'s

and we get

Ew(t—1)e(t—2) =X Eyt)e(t—1)=0 Ey(t—1)e(t—1)=0

ad a+d 1 Tyw(—1) b2
0 1 d rw(0) | =] 0
() ()

6

Hence, we have



with the solution

b2 A2
D) = T aa =@
bd)?
w0 = T aa-®
bA?

wll) = G- @)
O

Example 3. The Yule-Walker approach offers no advantage in this case and is
omitted. O

Example 4. First note that

y(t) = e(t)+ “old noise”
w(t) = e(t)+ “old noise”
Next, multiply
y(t) + ay(t —1) = e(t)
with w(t — 7), 7 > 0 to get

A r=0
Tyw(T) + aryy (T — 1) = { 0 750 (4.1)

Similarly, multiply
w(t) +dw(t —1) = e(t)
with y(t —7), 7 > 0 to get

A2 T=0

0 7>0 (4.2)

Tyw(—T) + dryy(—7+ 1) = {

We next need to combine one equation from (4.1) with another one from (4.2).
The choice is not unique. Taking (4.1) with 7 = 0 and (4.2) with 7 = 1, gives

() (me)=(7)

A2 —d)\?
= — w —]_ =
1—ad ' (=1) 1—ad

and hence

Tyw(0)

From (4.1) with 7 =1,2,...

)\2
Tyw(T) = —ary,(T—1)=... = (—a)T1 —
From (4.2) with 7 =1,2,...
)\2
Tyw(—T) = —dry(-7+1)=...= (—d)T1 7



We could also have started by combining (4.1) with 7 = 1 and (4.2) with 7 = 0.

This alternative lead to
1 a Tyw(l) Y _ [ O
d 1 Tyw(0) ]\ A2

A2 —a\?
w = w1 =
rw(0)= 7 ()=~

From which we can proceed as with the first alternative.

and

4.2 A systematic approach based on a Diophantine equa-

tion

This approach can be considered as a way to apply the Yule-Walker equations

systematically. It is primarily based on the relations

o = VLD &

k=—00

In order to simplify the derivation, assume

degA = degC =n
degD = degF =m

Introduce the polynomials G(z) and H(z~!) by the Diophantine equation

C()F(z 1) =G(2)D(z ") + zA(2)H(z)

where

G(z) = g,2"+ a2 4 g
HzY) = hez ™+ .4 hypo127?

Then, from (4.3), by substituting e = z:

2 G(2) QZH(Z_l)_ — - ok
Yam TN e T 2 e

k=—00

Here, we can identify

2 G(2) _ — - ok
A A(Z) - 12) ZﬂU(k)
QZH(Z_I) _ — - ok
A D(Z—l) - k:z—oo yw(k)

Now, (4.6) can be rewritten as
NG(2) = A(2) Y ryw(k)z ™"
k=0

8

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)



Equating (4.8) for different powers of z gives

P Mg, = 17y,(0)
P Mg = 17y(1) + a17yw(0)

2°: Mg, = Try(n) + ...+ apryw(0)
0 = Trw(nt 1) 4.+ aryw(1)
and hence
( T?/w(o) = )‘290
Tyw(1) = A2g1 — a17y,(0)
< : (4.9)
ryw(k) = Mgy — Zle ajryw(k —j) (for k=2,...,n)
| Tyw(k) = =71 aryw(k — J) (for all k > n)

Note that the last equation is nothing but the Yule-Walker equation.

Similarly, we get from (4.7)

NzH(z7') = D(z7h) i Tyw? " (4.10)

k=—o00

and after equating the powers in (4.10), we get

M (0 Xh, = Try,(—1)

Zﬁm+2 . )\2h1 = ]-Tyw(_Z) + dlryw(_l)
2° /\2hm_1 = 1'7"yw(_m) +.. .+ dmflryw(_l)
2| 0 = Lryw(-m—1)+...+ dpry(-1)

This leads to

Tyw(_l) = )\2ho
ryw(—k) = Nhy — S5 djrye(—k+4) (k=2,...,m) (4.11)
ryw(=k) = =37 djry(=k + 7) (for all k> m)

Example 1. In this case, C = F = ¢, A =D =qg+a, n = m = 1. The
Diophantine equation (4.4) becomes

)z = (goz+91)(z7  +a) + z(z + a)hoz™?
Equating powers of z gives

z: 0 = goa+h,
22: 1 = g,+ gra+ ah,
z70: 0 = ¢

leading to



Next, (4.9) gives

2 A2
ry(0) = Ag, = 1_ a2
—a)\?
r,(1) = Xg —ary(0) T (4.12)
—a?)\?
n@) = (an()=T2
O

Example 2. In this case

C =b F=1 A=(q+a)(g+d D=gq+d
n = 2 m=1

The Diophantine equation (4.4) becomes
b1 = (92" + g1z 4 92) (27  +d) + 2(2 + a)(z + d) (hoz ™)

Equating powers of z gives

22 0 = g, d+h,
z: 0 = g,+ gid—+ ah,+ dh,
2°: b = g1+ god+ adh,
zl: 0 = g
leading to
—bd b(1 — ad — d?) bd?

PmU—ad(1-@) T U—ad(l-@) T 1-ad)(1-ad)
Next, (4.9) gives

—bd )2
1 —ad)(1— @)
ryu(1) = N[g1 — (a+ d)go]
bA? bA?

— (l_ad)(l_d2)[1—ad—d2+ad+d2]: 0 ad)(i_ @)

ryu(0) = Mg, =

Example 3. Here
C=F=¢+cig+c;, A=D=¢ n=m=2
The Diophantine equation will now be

(P +caz+e)z?+az ) = (22 +q1z+g0)2 2
+2*(hoz™? 4+ h1271)

10



Equating powers of z gives

22 o = Iy
Z: ¢ +cee = h,
2 1+E+c& = g
Z_l : c1 +cicp = g1
z 2 o = g

and from (4.9) gives

/\291 = )\2(01 + 0102)
= /\292 = )\202

<
<
—~~
—
~— —

{ r(0) = Agy= (146 + )

Example 4. In this case
C=1 F=1 A=q+4+a D=qg+d n=m=1
The Diophantine equation (4.4) gives

1'1=(goz+g1)(z7t +d) + 2(2 + a)h,z7*

and hence
22 0 = g d+h,
z: 1 = g,+ gid+ ah,
2l 0 = ¢
leading to
1 —d
o= h'o =
I 1—ad 1—ad
Next, the use of (4.9) yields
'f'yw(o) = )\290 = IL\Zd
ryw(l) = ANg1 — ary,(0) = =5N°
k
ryw(k) = —ary(k—1)=... = £\ E>1

Further, (4.11) gives

rpw(=1) = A2h, = =L )2
ryw(—k) = —dry,(—k+1) = £2 )2 E>1

5 Method 3 - Integrals around the unit circle

This approach is based on the relations

blw) = f: r(k)e
r(k) = %/Zqﬁ(w)eik‘“dw



that hold between the spectral density and the covariance function.

The cross-spectrum ¢y, (w) for the processes of (1.1) can be written as

) Fe™)
A(e®) D(e ™)

d’yw(w) =

The cross-covariance function is then obtained from the integral formula. By
changing the independent variable from w to z = ¢, the integration path becomes
the unit circle counterclockwise. Noting that dz = i1zdw, we get

( F e_iw) 2 ik
J(k) = / ) \2ptkug
Ty ( ) 27T A( W D e_zw) e W
C(z) -1 dz
= A2 k2 5.1
omi [ Az z_l) “ (5.1)

Sometimes, it is more convenient to make the transformation z = e~*, which leads

to
Z) o _dz

"l =50 P AT D) 2

where § still denotes integration around the unit circle counterclockwise. The
integrals (5.1), (5.2) can be evaluated using residue calculus. This is a feasible
approach, in particular for low order models with distinct poles inside the unit
circle.

(5.2)

Example 1. In this case, we have

-1

A2 ]{ z z ,dz

o2mi ) z4+a z7'+a z

ry(T) =

2 27
- 2_7”7{ Cradtan”

The only pole inside the unit circle (as 7 > 0 due to the state problem formulation)
is z = —a. By residue calculus,

Should we want to evaluate r,(7) for negative 7, the alternative form (5.2) (corre-
sponding to the transformation Z = —27") would lead to the integral

ry(—7) = /\—27{ G o —dz

2mi ) (24 a)(1+ a2)

and we are back to the above calculation. O

Example 2. We get,

oo R L e
T/ = oni (z +a)(z + d) T rd” 2
A2 bz"

—?{ dz
2ni ) (z4a)(z+d)(1+ dz)

12



The integrand has poles in z = —a and 2z = —d inside the unit circle. Residue
calculus gives

ba)  b(=d)
d—a)1—ad) ' (a—d)(1- &)

bA2 (=a)(1—d?) — (=d)"(1 — ad)

(d—a) 1—ad)(1— @)

Tyu(T) = 22

As the numerator will vanish if a = d, we can cancel a factor (d — a). We consider
the values 7 = 0 and 1 separately:

ro(0) = X 1—-d®*—1+ad —bd\?
VT d—a (1—ad)(1—d2) (1 —ad)(1—d?)
(1) = N —a+ad®+d—ad® b\?
il T 0o Q—ad)1-?)  (1—ad)(l—d)
O
Example 3. Here, we have
A2 dz
Tyu(T) 9 f{(zz +ezte)z 4zt + CQ)zT?
A’ 2, 2 —1 9 . 9 Lz
= —.%[(1—#014—02)4— (z 4+ 271 (e1 + e169) + (27 + 27%) 2" —
271 z
Recalling that
L]{ k%—é _J1if k=0
omi) Z 27 OO T 0 i k#£0
we get
r(T) = (L+ ¢+ c3)6r0+ (e1 4 c1c2)[671 + 67 1]
+62[(57—,2 + 57,_2]
O

Example 4. Following the recipe, we get

Tyw(T)

A2 7{ 1 1 ,dz
= — zZ —
o2mi) z4+a z7'4+d oz

Assume first that 7 > 0. We then get (z = —a will be the only pole inside the
unit circle),

22 1 1 ,
TW(T) N %%z—i—a 1—|—dzz dz
)\2
- 1—ad(_a)

Next, consider the case 7 = —2. We then get

_ A_ng !
Comi ) 22(z+a)(1 4+ d2)

13



We have a distinct zero in z = —a and a double pole in z = 0. Multiple poles

imply that use of residue calculus requires some extra effort. In this example, this

difficulty can be circumvented by a change of variables z — Z = 271,

Should we insist to proceed with the integral (5.3), we get
1
N
zral +dz)] AP0 —ad)
2i 1 + )\72
dz | (z+a)(1+dz) 1220 a?(1 — ad)
o (1+dz) +d(z+a) A2
2 2 T3
(z+a)?(l+dz)? |, a*(1—ad)
1+ ad A2 A2

= a? * a?(1 — ad) - a?(1 — ad) [ -ad) +1] =

Tyw(—2) = )\QResz_ol

A2 (2
1—oad
O

6 Method 4 - State space form

The basic idea of this method is to rewrite the model into state space form

z(t+1) = Fz(t) + Ge(t)

A() = Ha(t) (6.1)

The variables of interest (y(¢ 4+ 7) and w(t)) should if possible appear in the state
vector x(t), but otherwise in the output vector z(t).

We first derive an equation for the stationary state covariance matrix P = Ez(t)zT (t)
= Ez(t + 1)z”(t + 1). Noting that z(¢) depends on e(s) for s < ¢, we find that
x(t) and e(t) are uncorrelated. Using this fact, we get
P = Ex(t+ 12" (t+1) = E[Fz(t) + Ge@®)|[zT ) FT + e(t)G"]

= F[Ex(t)zT ()|FT + GE*(t)GT

= FPF"+ )3°GG" (6.2)
This is a so-called Lyapunov equation. Noting that P is a symmetric matrix, it can
be formulated elementwise as a linear system of equations with % unknowns.

Next, we consider the covariance function of z(t). Let 7 > 0. Then
ro(1) = Exz(t+71)z" (t)
= E[Fz(t+7—1)+Ge(t+71—1)]2"(t)
= Fr(r—1)=...
= F'r,(0)=F"P
The covariance function of the outputs is then readily obtained as
r,(T) = Ez(t+71)2" (1)
= EHz(t+7)a (t)HT
= HF'PH"

14



Example 1. The simplest state space model in this case is
z(t+1) = —az(t) + e(t)

(corresponding to F' = —a, G = 1, H = 1). The Lyapunov equation becomes
P =a?P + X\? giving P = A\?/(1 — a?). The covariance function of z(t) = y(t) is

)\2
ry(T) = (—a)Tl_iaQ 720

A more complicated alternative would be to set

y(t)
z(t) = y(t—1)
y(t —2)

as state vector. The corresponding P matrix will then be related to the covariance
function as
ry(0) ry(1) 7y(2)
P=1 ry(1) ry(0) ry(1)
ry(2) ry(1) 74(0)

The state space model will be

—a 0 0 1
zt+1)=| 1 0 0 [z(t)+ | O |e(¢)
0 10 0
Without imposing more than symmetry on P, we set
P11 P12 D13
P=1| pi2 pa2 Pz
P13 P23 D33
and the Lyapunov equation becomes
P11 Di2 DPi3 —a 00 P11 Pi2 D13 —a 10 100
P2 P2 P23 | =| 1 00 P12 P2 D23 0 01 |+X[000
D13 D23 D33 0 10 D13 D23 D33 0 00 0 00

Evaluating the various matrix elements (and again using the symmetry) gives

P = a2p11+)\2

P12 = —apu
P13 = —api2
P22 = Pu
b2s = P12
P33 = P22

leading quickly to

15



This leads to
st +1) = ( o0 )x(t)—i— ( . )v(t)

The Lyapunov equation becomes

p—|(Pn P2 _ —d 0 P11 P12 —d b gy 10
D12 P22 b —a Pi2 P22 0 —a 0 0
Equating the elements gives
pun = dpn+ N

P12 —bdp11 + adpi2
P = bzpn + a2p22 — 2abp12

with the solution

\2 —bd 2 b2(1 4 ad) A2

Pi=7"¢ T _@)i-aw) "7 1-)1-adl-d)

Here, we can by construction identify r,,(0) = p12. We also have

ro(1) = E ( %13 )(u(t) y(0)) = ( ru(1)  ruy(1) )

Hence

<
<
S
—
—_
N—r
Il
—
ja)
—_
N—r
3
8
—~~
—_
e
S
(aw]
~_
Il

(0 1)FP<3>
o (7 0) () (3)

= (b —“)@E): (1—d’j))A(21—ad)

Example 3. We take in this case

e(t)
z(t)=| e(t—1)
e(t —2)

16



giving

0 00 1
z(t+1) = (1 0 O)x(t)+(0)e(t)
010 0

y(t) = (1 & c)z()

The Lyapunov equation gives

P11 P12 Di3 0 00 P11 P12 Di3
P=1| p92 po ps |=]1 00 Di2 P22 D23
D13 P23 D33 010 D13 P23 D33

which leads to the fairly natural result P = \21!

O O =
O = O
SN———

_|_

>

N
//
o O =
o O O
o O O

We next get

r,(0) = HPH" =(1 ¢; co)N*I ( ¢ ) =M1+ +3)

O = O
= o O

r,(1) = HFPH" =(1 ¢ 02))\2(

00
r,(2) = HF’PH" =X (1 ¢ cz)(o 0
10

As F? =0, we have r,(7) = 0 for 7 > 3. O
Example 4. In this case, it is natural to choose y(t) and w(t) as state variables.

With

we have

—-a 0 1
x(t—i—l)—( 0 _d>x(t)+<1>e(t)
The Lyapunov equation will be
P11 P12 —a 0 P11 P12 —a 0 of 1 1
p= = +A
<P12 p22> ( 0—d><p12 p22>< 0—d> (11

and hence

- ) C( A2/(1—a?) A2/(1—ad)
piz = adpiz+ A :>P_<)\2/(1—ad) )\2/(1—d2)>

Let 7 > 0. Then
ey = (7o) o)) (i) )



Inspecting the nondiagonal element, we have

win) = T
Tyw(—T) = (1_?);22

7 Exercises

1. Determine the autocovariance function r(7) [for all 7] for the ARMA(1,1)
process
y(t) +ay(t —1) =e(t) + ce(t — 1)

2. Determine the autocovariance function r(7) for 7 = 0,1,2 for the AR(2)
process
y(t) + ary(t — 1) + azy(t — 2) = e(?)

The following problems in

T Séderstrom and P Stoica: System Identification (Prentice Hall In-
ternational, Hemel Hempstead, UK, 1989)

do all involve covariance calculations:
2.4, 2.5, 7.14, 8.3, 8.6, 8.7, 10.1, 10.2, 11.7, 11.8, 12.4, 12.7.

18



