1 Introduction

\"

u System
S

Figur 1: System description.

u is the input to the system (measurable).

y is the output from the system (measurable).
e v is process noise (non measurable).

e ¢ IS measurement noise.

Problem: Given measurements {u(k), y(k)}._, identify the system S.

Questions:

Model structure?

Choice of input?

Identification method?

How to deal with noise?



2 Stochastic variables - a short review

The following results are for reel and scalar variables. However, it is straightforward to
generalize for complex and vector valued variables. Most of the results presented here
are taken from the textbook Discrete-time Stochastic Systems by Torsten Soderstrom,
Springer, 2002.

A stochastic variable y is characterized by its probability density function (pdf) py(z).
For example, a Gaussian distribution is described by

1 _ (e=m)*
py(z) = e =2, >0 (2.1)
270

whereas a uniform distribution is given by

Py(iv):{g_% a<z<b (b>a) (2.2)

otherwise

Moments: To characterize a stochastic variable one often resorts to moments. The ith
moment of a stochastic variable y is given by

Eyt = /_00 z'py (z) dz (2.3)

where F{-} is the ezpectation operator. Notice the important fact that the expectation
operator is a linear operator,i.e., if z = Y1 | a;y;, where {y;} are random variables and
a; some constants, then it holds that

n
Ez=) a;Ey (2.4)
=1

Two important and widely used concepts related to moments are the mean value

o0
my = Ey= / zpy(z) dz (2.5)
—0o0
and the variance
vary 2 E (y — my)2 =Eqy?— mz (2.6)

Correlation and dependence: Let £ and 7 be two random variables with mean values
mg¢ and my), respectively. The two variables are said to be uncorrelated if

E(¢ —me)(n —my) =0 (2.7)
The variables are said to be independent if

Pen (T, y) = Pepy (2.8)

We have the following results:

e ¢, 1 independent = &, 1 uncorrelated.

e ¢, n uncorrelated and Gaussian = independent.



Notice, though, that for two general stochastic variables z and y

Exzy+# FExEy (2.9)
However, if z and y are independent, then

Exzy=FEzEy (2.10)

Gaussian distribution: A distribution of particular interest is the Gaussian pdf. A
random variable y is said to be Gaussian distributed as

y ~ N(m,o?) (2.11)

if its pdf is given by (2.1). Some properties are:

e If y ~ N(m,0?) then Ey = m and var y = o>

e If y ~ N(m,0?) and v = ay + b, for some scalars a,b then v ~ N(am + b, a%0?).
The Gaussian distribution has several interesting features, including:

e Owing to the central limit theorem, the sum of many independent and equally
distributed random variables can be well approximated by a Gaussian distribution.
Hence, it seems feasible to model disturbances as Gaussian distributed random
variables.

e Gaussian random variables have several attractive mathematical properties, see
e.g. the results above.



3 Stochastic processes - some important concepts

A stochastic process z(t) can for our purposes be considered as a sequence of random
variables {z(t)}¥_, (here we assume that z(t) is scalar and real valued).

In order to fully characterize a stochastic process its distribution function

P(z(t1) < z1, z(t2) < w2, ..., z(tk) < ) (3.1)
is needed for arbitrary k, z; and ¢; (1 = 1,..., k). Often this is too cumbersome and one
resorts to using moments (first and second order moments).

Mean:
me(t) £ E z(t) (3.2)

Covariance function:
ro(t, 8) £ E (z(t) — mg(t)) (z(s) — mg(s)) (3.3)

Stationarity: A stochastic process z(t) is strictly stationary if its distribution is time-
invariant. It is weakly stationary if the mean and the covariance functions are time-
invariant. Let z(¢) be a (weakly) stationary stochastic process. Then, apparently the
mean is constant and the covariance function depends only on the difference between its
time arguments. Hereafter z(¢) is a (weakly) stationary stochastic process, and we have
Mean:

mg = FE z(t) (3.4)

Covariance function:
ro(1) = E (2(t 4+ 1) — mg) (z(t) — my) (3.5)

Results:

(k) (3.6)

(x(k + ) = ivg) (z(k) — 1g) (3.7)
Ergodicity: 7, — m, and 75(7) — r4(7), as N — oo (number of data goes to infinity).
Instead of characterizing a signal using its mean value and covariance function (time
description), we can choose to describe the signal in the frequency domain using the

spectral density.

Spectral density:



Interpretation: The covariance function describes the coupling between z(t) and z (¢ +
7). If 7 = 0 we get the variance. The spectral density describes how the energy in the
signal is distributed over frequency (on the average).

White noise: A sequence of independent (and identically) distributed random variables
is called white noise.

Results: If e(t) is white noise with zero mean and variance A\?. Then

1 t=s

o 1o(7) = Ee(t + 7)e(t) = A26T’0, where the Kronecker delta d0;, = {0 otherwise

o fe(w) = %, it is constant!
Often, the white noise e(t) is assumed to be Gaussian distributed, i.e.,
e(t) ~ N(0,)?) (3.9)
3.1 Filtering white noise

Let e(t) be white noise with zero mean and variance A\2. Then y(t), defined as
y(t) +ary(t —1) +--- +apy(t —n) =e(t) + cre(t — 1)+ --- + cpe(t —m)  (3.10)

is referred to as an ARMA-process. Often (3.10) is written abbreviated as

A(q)y(t) = Clge(?) (3.11)

where
Alg) ="+ a12" 1 +... 4+ ay 3.12
Clg)=72"+c1z™ +... +cm 3.13)

Properties:

e Mean: Ey = H(1)Ee = 0.

e Spectrum : ¢y(z) = H(z)H(z*1)§ Note that if z = ¢/, the spectral density is
obtained.

e Recall that the spectrum ¢y (z) can approximate any continuous spectrum arbi-
trarily close. Hence, the use of filtered white noise is a good way to describe various
signals.



