Final Exam in System Identification for F and STS

Answers and Brief Solutions

Date: March 16, 2007
Examiner: Magnus Mossberg

1. a)

$$
\lim _{N \rightarrow \infty} \hat{\theta}_{N}-\theta_{0}=\left[\begin{array}{cc}
\mathrm{E}\left\{y^{2}(t)\right\} & -\mathrm{E}\{y(t) u(t)\} \\
-\mathrm{E}\{u(t) y(t)\} & \mathrm{E}\left\{u^{2}(t)\right\}
\end{array}\right]^{-1}\left[\begin{array}{c}
-\mathrm{E}\{y(t-1) w(t)\} \\
\mathrm{E}\{u(t-1) w(t)\}
\end{array}\right] \neq 0
$$

b) For example,

$$
\check{\theta}_{N}=\left(\frac{1}{N} \sum_{t=1}^{N} z(t) \varphi^{T}(t)\right)^{-1}\left(\frac{1}{N} \sum_{t=1}^{N} z(t) y(t)\right)
$$

where

$$
z(t)=\left[\begin{array}{ll}
-y(t-2) & u(t-1)
\end{array}\right]^{T}
$$

2. a)

$$
\operatorname{mse}(\check{d})=\operatorname{var}(\check{d})+(\underbrace{\operatorname{bias}(\check{d})}_{=0})^{2}=\operatorname{var}(\check{d})=\frac{\lambda^{2}}{N}
$$

b)

$$
\operatorname{mse}(\bar{d})=\operatorname{var}(\bar{d})+(\operatorname{bias}(\bar{d}))^{2}=\frac{a^{2} \lambda^{2}}{N}+d^{2}(a-1)^{2}
$$

where

$$
a_{\mathrm{opt}}=\frac{d^{2}}{d^{2}+\lambda^{2} / N}
$$

minimizes mse (\bar{d}). The estimator \bar{d} is not realizable with this choice of a, since $a_{\text {opt }}$ depends on the unknown parameter d.
c)

$$
\begin{gathered}
\hat{d}(t)=\left(\sum_{k=1}^{t} \lambda^{t-k}\right)^{-1} \sum_{k=1}^{t} \lambda^{t-k} x(k) \\
\hat{d}(t)=\hat{d}(t-1)+\frac{1-\lambda}{1-\lambda^{t}}(x(t)-\hat{d}(t-1))
\end{gathered}
$$

3. a) Not identifiable; predictor $\hat{y}\left(t \mid b_{1}, b_{2}\right)=\left(b_{1}+b_{2}\right) u_{0}$.
b) Not identifiable; predictor $\hat{y}(t \mid a, b)=(-b c-a) y(t-1)$.

Use, for example, $u(t)=-c y(t-1)$ or use two different values of c.
4. a) One resonance peak is given by a complex conjugated pair of poles. Start with model order four.
b) ARX; linear regression.
c) Overfit.
d) The result is often given as a table or as a curve.
e) The A-polynomial of the ARX-model must describe the disturbance dynamic through $1 / A$. This can result in a slightly erroneous description of the system dynamic. It is easier for the ARMAX-model to describe both the system- and the disturbance dynamic due to the C-polynomial.
f) A useful and good model can describe new data with high enough accuracy. Such a test can also reduce the risk for overfit.
5. Predictor

$$
\hat{y}(t \mid \theta)=\left[\begin{array}{ll}
-y(t-1) & -y(t-2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\varphi^{T}(t) \theta
$$

a)

$$
\begin{aligned}
\mathrm{E}\left\{\left(\hat{\theta}_{N}-\theta_{0}\right)\left(\hat{\theta}_{N}-\theta_{0}\right)^{T}\right\} & \approx \frac{\lambda^{2}}{N}\left(\mathrm{E}\left\{\varphi(t) \varphi^{T}(t)\right\}\right)^{-1} \\
& =\frac{\lambda^{2}}{N}\left[\begin{array}{ll}
r_{y}(0) & r_{y}(1) \\
r_{y}(1) & r_{y}(0)
\end{array}\right]^{-1}=\frac{1}{N}\left[\begin{array}{cc}
1 & a_{0} \\
a_{0} & 1
\end{array}\right]
\end{aligned}
$$

so $\operatorname{var}\left(\hat{a}_{1}\right)=\operatorname{var}\left(\hat{a}_{2}\right)=1 / N$.
b)

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{\theta}_{N} & =\left(\mathrm{E}\left\{\varphi(t) \varphi^{T}(t)\right\}\right)^{-1} \mathrm{E}\{\varphi(t) y(t)\} \\
& =\left[\begin{array}{ll}
r_{y}(0) & r_{y}(1) \\
r_{y}(1) & r_{y}(0)
\end{array}\right]^{-1}\left[\begin{array}{l}
-r_{y}(1) \\
-r_{y}(2)
\end{array}\right]=\left[\begin{array}{c}
a_{0} \\
0
\end{array}\right]
\end{aligned}
$$

$\lim _{N \rightarrow \infty} \hat{a}_{1}=a_{0}$. The estimate is correct.
$\lim _{N \rightarrow \infty} \hat{a}_{2}=0$. This makes sense when comparing the model with the system.
6. a)

$$
\hat{G}\left(e^{i \omega}\right)=\sum_{k=0}^{\infty} \hat{g}(k) e^{-i \omega k}=\frac{1}{\alpha} \sum_{k=0}^{\infty} y(k) e^{-i \omega k}=\frac{1}{\alpha} \sqrt{N} Y_{N}(\omega)=\frac{Y_{N}(\omega)}{U_{N}(\omega)}=\hat{\hat{G}}_{N}\left(e^{i \omega}\right)
$$

where it is used that

$$
U_{N}(\omega)=\frac{1}{\sqrt{N}} \alpha
$$

in the second last equality.
b)

$$
\begin{aligned}
\tilde{g}(t)=\hat{g}(t)-g_{0}(t) & =\frac{v(t)-v(t-1)}{\beta} \\
\operatorname{var}(\tilde{g}(t)) & =\frac{2 \lambda^{2}}{\beta^{2}}
\end{aligned}
$$

7. Linear regression

$$
-\hat{r}(\tau)=\left[\begin{array}{lll}
\hat{r}(\tau-1) & \cdots & \hat{r}(\tau-n a)
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n a}
\end{array}\right]
$$

where

$$
\hat{r}(\tau)=\frac{1}{N} \sum_{t=\tau}^{N} y(t) y(t-\tau)
$$

$\tau=n c+1, n c+2, \ldots, n c+n a$ give

$$
\left[\begin{array}{ccc}
\hat{r}(n c) & \cdots & \hat{r}(n c+1-n a) \\
\vdots & & \vdots \\
\hat{r}(n c+n a-1) & \cdots & \hat{r}(n c)
\end{array}\right]\left[\begin{array}{c}
\hat{a}_{1} \\
\vdots \\
\hat{a}_{n a}
\end{array}\right]=\left[\begin{array}{c}
-\hat{r}(n c+1) \\
\vdots \\
-\hat{r}(n c+n a)
\end{array}\right]
$$

This can (essentially, apart from different start indexes in sums) be written as

$$
\left(\frac{1}{N} \sum_{t=1}^{N} z(t) \varphi^{T}(t)\right) \hat{\theta}_{N}^{\mathrm{IV}}=\frac{1}{N} \sum_{t=1}^{N} z(t) y(t)
$$

where

$$
\varphi(t)=\left[\begin{array}{lll}
-y(t-1) & \cdots & -y(t-n a)
\end{array}\right]^{T}
$$

(the AR-part is estimated) and

$$
z(t)=\left[\begin{array}{lll}
-y(t-(n c+1)) & \cdots & -y(t-(n c+n a))
\end{array}\right]^{T}
$$

8. a) Let

$$
\hat{\lambda}_{N}=\frac{1}{N} \sum_{t=1}^{N} \varepsilon^{2}\left(t, \hat{\theta}_{N}^{(p)}\right)
$$

The C_{p}-criterion can then be written as

$$
\begin{equation*}
C_{p}=\frac{N \hat{\lambda}_{N}}{\hat{s}_{N}^{2}}-(N-2 p) \tag{1}
\end{equation*}
$$

When selecting p, the quantities N and

$$
\hat{s}_{N}^{2}=\frac{1}{N} \sum_{t=1}^{N} \varepsilon^{2}\left(t, \hat{\theta}_{N}^{\left(p_{\max }\right)}\right)
$$

are seen as constants. Minimizing (1) with respect to p is therefore equivalent to minimizing

$$
\begin{equation*}
N \hat{\lambda}_{N}+2 p \hat{s}_{N}^{2} \tag{2}
\end{equation*}
$$

with respect to p. Compare with AIC, which minimizes

$$
\begin{equation*}
N \hat{\lambda}_{N}\left(1+\frac{2 p}{N}\right)=N \hat{\lambda}_{N}+2 p \hat{\lambda}_{N} \tag{3}
\end{equation*}
$$

The only difference between (2) and (3) is that $\hat{\lambda}_{N}$ in (3) is replaced by \hat{s}_{N}^{2}. From an operational point of view, this difference is minor.
b) Assume that the denominator is

$$
C(z)=\left(z-p_{1}\right)\left(z-p_{2}\right)
$$

so

$$
C\left(e^{i \omega}\right)=\left(e^{i \omega}-p_{1}\right)\left(e^{i \omega}-p_{2}\right)
$$

Resonance peaks at $\omega= \pm 1$ means that $C\left(e^{i \omega}\right)$ has minimum values for $\omega= \pm 1$:

$$
\begin{gathered}
e^{i}-p_{1}=0 \\
e^{-i}-p_{2}=0
\end{gathered}
$$

so $p_{1}=e^{i}$ and $p_{2}=e^{-i}$.
c) Minimum point of $Q(x)$? Solve $Q^{\prime}(x)=0$ to get

$$
x=x_{k}-\left(J^{\prime \prime}\left(x_{k}\right)\right)^{-1} J^{\prime}\left(x_{k}\right)
$$

Take x_{k+1} as the minimum point:

$$
x_{k+1}=x_{k}-\left(J^{\prime \prime}\left(x_{k}\right)\right)^{-1} J^{\prime}\left(x_{k}\right)
$$

