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1. a)

lim
N→∞

θ̂N − θ0 =
[

E{y2(t)} −E{y(t)u(t)}
−E{u(t)y(t)} E{u2(t)}

]−1 [−E{y(t− 1)w(t)}
E{u(t− 1)w(t)}

]
6= 0

b) For example,

θ̌N =

(
1
N

N∑
t=1

z(t)ϕT (t)

)−1(
1
N

N∑
t=1

z(t)y(t)

)
where

z(t) =
[
−y(t− 2) u(t− 1)

]T
2. a)

mse(ď) = var(ď) +
(
bias(ď)︸ ︷︷ ︸

=0

)2 = var(ď) =
λ2

N

b)

mse(d̄) = var(d̄) +
(
bias(d̄)

)2 =
a2λ2

N
+ d2(a− 1)2

where

aopt =
d2

d2 + λ2/N

minimizes mse(d̄). The estimator d̄ is not realizable with this choice of a, since
aopt depends on the unknown parameter d.

c)

d̂(t) =

(
t∑

k=1

λt−k

)−1 t∑
k=1

λt−kx(k)

d̂(t) = d̂(t− 1) +
1− λ

1− λt

(
x(t)− d̂(t− 1)

)
1



3. a) Not identifiable; predictor ŷ(t|b1, b2) = (b1 + b2)u0.
b) Not identifiable; predictor ŷ(t|a, b) = (−bc− a)y(t− 1).

Use, for example, u(t) = −cy(t− 1) or use two different values of c.

4. a) One resonance peak is given by a complex conjugated pair of poles. Start with
model order four.

b) ARX; linear regression.
c) Overfit.
d) The result is often given as a table or as a curve.
e) The A-polynomial of the ARX-model must describe the disturbance dynamic

through 1/A. This can result in a slightly erroneous description of the system
dynamic. It is easier for the ARMAX-model to describe both the system- and
the disturbance dynamic due to the C-polynomial.

f) A useful and good model can describe new data with high enough accuracy. Such
a test can also reduce the risk for overfit.

5. Predictor

ŷ(t|θ) =
[
−y(t− 1) −y(t− 2

] [a1

a2

]
= ϕT (t)θ

a)

E{(θ̂N − θ0)(θ̂N − θ0)T } ≈ λ2

N
(E{ϕ(t)ϕT (t)})−1

=
λ2

N

[
ry(0) ry(1)
ry(1) ry(0)

]−1

=
1
N

[
1 a0

a0 1

]
so var(â1) = var(â2) = 1/N .

b)

lim
N→∞

θ̂N = (E{ϕ(t)ϕT (t)})−1E{ϕ(t)y(t)}

=
[
ry(0) ry(1)
ry(1) ry(0)

]−1 [−ry(1)
−ry(2)

]
=
[
a0

0

]
lim

N→∞
â1 = a0. The estimate is correct.

lim
N→∞

â2 = 0. This makes sense when comparing the model with the system.

6. a)

Ĝ(eiω) =
∞∑

k=0

ĝ(k)e−iωk =
1
α

∞∑
k=0

y(k)e−iωk =
1
α

√
NYN (ω) =

YN (ω)
UN (ω)

= ˆ̂
GN (eiω)
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where it is used that

UN (ω) =
1√
N

α

in the second last equality.

b)

g̃(t) = ĝ(t)− g0(t) =
v(t)− v(t− 1)

β

var
(
g̃(t)

)
=

2λ2

β2

7. Linear regression

−r̂(τ) =
[
r̂(τ − 1) · · · r̂(τ − na)

]  a1
...

ana


where

r̂(τ) =
1
N

N∑
t=τ

y(t)y(t− τ)

τ = nc + 1, nc + 2, . . . , nc + na give r̂(nc) · · · r̂(nc + 1− na)
...

...
r̂(nc + na− 1) · · · r̂(nc)


 â1

...
âna

 =

 −r̂(nc + 1)
...

−r̂(nc + na)


This can (essentially, apart from different start indexes in sums) be written as(

1
N

N∑
t=1

z(t)ϕT (t)

)
θ̂IV
N =

1
N

N∑
t=1

z(t)y(t)

where

ϕ(t) =
[
−y(t− 1) · · · −y(t− na)

]T
(the AR-part is estimated) and

z(t) =
[
−y
(
t− (nc + 1)

)
· · · −y

(
t− (nc + na)

)]T
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8. a) Let

λ̂N =
1
N

N∑
t=1

ε2(t, θ̂(p)
N )

The Cp-criterion can then be written as

Cp =
Nλ̂N

ŝ2
N

− (N − 2p)(1)

When selecting p, the quantities N and

ŝ2
N =

1
N

N∑
t=1

ε2(t, θ̂(pmax)
N )

are seen as constants. Minimizing (1) with respect to p is therefore equivalent to
minimizing

Nλ̂N + 2pŝ2
N(2)

with respect to p. Compare with AIC, which minimizes

Nλ̂N

(
1 +

2p

N

)
= Nλ̂N + 2pλ̂N(3)

The only difference between (2) and (3) is that λ̂N in (3) is replaced by ŝ2
N . From

an operational point of view, this difference is minor.
b) Assume that the denominator is

C(z) = (z − p1)(z − p2)

so

C(eiω) = (eiω − p1)(eiω − p2)

Resonance peaks at ω = ±1 means that C(eiω) has minimum values for ω = ±1:

ei − p1 = 0

e−i − p2 = 0

so p1 = ei and p2 = e−i.
c) Minimum point of Q(x)? Solve Q

′
(x) = 0 to get

x = xk −
(
J

′′
(xk)

)−1
J

′
(xk)

Take xk+1 as the minimum point:

xk+1 = xk −
(
J

′′
(xk)

)−1
J

′
(xk)
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