Final Exam in System Identification for F4

Answers and brief solutions

Date: March 14, 2008
Examiner: Magnus Mossberg
1.

$$
\left[\begin{array}{cc}
\sum i^{2}(t-1) & -\sum i(t-1) u(t-1) \\
-\sum i(t-1) u(t-1) & \sum u^{2}(t-1)
\end{array}\right]\left[\begin{array}{l}
\hat{a} \\
\hat{b}
\end{array}\right]=\left[\begin{array}{c}
-\sum i(t) i(t-1) \\
\sum i(t) u(t-1)
\end{array}\right]
$$

2. a)

$$
\begin{aligned}
r_{y u}(\tau) & =\mathrm{E}\{y(t+\tau) u(t)\} \\
& =\mathrm{E}\left\{\left(\sum_{k=0}^{\infty} g(k) u(t+\tau-k)+v(t)\right) u(t)\right\} \\
& =\mathrm{E}\left\{\sum_{k=0}^{\infty} g(k) u(t+\tau-k) u(t)\right\} \\
& =\sum_{k=0}^{\infty} g(k) r_{u}(\tau-k) \\
& =g(k) \delta_{\tau, k} \lambda^{2} \\
& =\lambda^{2} g(\tau)
\end{aligned}
$$

b)

$$
\hat{r}_{y u}(\tau)=\frac{1}{N} \sum_{t=1-\min (\tau, 0)}^{N-\max (\tau, 0)} y(t+\tau) u(t), \quad \tau=0, \pm 1, \pm 2, \ldots
$$

which gives

$$
\hat{g}(\tau)=\frac{1}{\hat{\lambda}^{2}} \hat{r}_{y u}(\tau)
$$

where $\hat{\lambda}^{2}$ is an estimate of λ^{2}.
3. a)

$$
\begin{aligned}
\hat{a} & =\left(\frac{1}{N} \sum_{t=1}^{N} \varphi^{2}(t)\right)^{-1}\left(\frac{1}{N} \sum_{t=1}^{N} \varphi(t) y(t)\right) \\
& =\left(\frac{1}{N} \sum_{t=1}^{N} y^{2}(t-1)\right)^{-1}\left(-\frac{1}{N} \sum_{t=1}^{N} y(t-1) y(t)\right) \\
& \xrightarrow[N \rightarrow \infty]{ }-\frac{r_{y}(1)}{r_{y}(0)}=a_{0}
\end{aligned}
$$

b)

$$
\operatorname{var}(\hat{a}) \approx \frac{\lambda^{2}}{N} \bar{R}^{-1}
$$

where

$$
\bar{R}=\mathrm{E}\left\{\varphi^{2}(t)\right\}=r_{y}(0)=\frac{\lambda^{2}}{1-a_{0}^{2}}
$$

so

$$
\operatorname{var}(\hat{a}) \approx \frac{1-a_{0}^{2}}{N}
$$

4.

$$
\begin{gathered}
\hat{c}(t)=\left(\sum_{k=1}^{t} 0.9^{t-k}\right)^{-1} \sum_{k=1}^{t} 0.9^{t-k} y(k) \\
\hat{c}(t)=\hat{c}(t-1)+\frac{0.1}{1-0.9^{t}}(y(t)-\hat{c}(t-1))
\end{gathered}
$$

5. A discussion can be made based on the material in the course book.
6. a)

$$
\mathrm{E}\{\hat{c}\}=\frac{1}{2} c
$$

b)

$$
\operatorname{var}(\hat{c})=\frac{\sigma^{2}}{4 N}
$$

7. a)

$$
\mathrm{E}\left\{z(t) \varphi^{T}(t)\right\}=\left[\begin{array}{cc}
b_{0} \lambda^{2} & k b_{0} \lambda^{2} \\
0 & \lambda^{2}
\end{array}\right]
$$

b) Choose $u(t)$ so that it is sufficiently variational, persistently exciting of sufficient order, and so that $\frac{1}{N} \sum_{t=1}^{N} \varphi(t) \varphi^{T}(t)$ is invertible.

