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Instructions

The solutions to the problems can be given in Swedish or in English.

Problem 6 is an alternative to the homework assignment. (In case you
choose to hand in a solution to Problem 6, you will be accounted for the best
performance of the homework assignments and Problem 6.)

Solve each problem on a separate page.

Write your name on every page.

Provide motivations for your solutions. Vague or lacking motivations may lead to
a reduced number of points.

Aiding material: Textbooks in system identification, automatic control, statistics,
signal processing, mathematical handbooks, handwritten lecture notes, collection
of formulas (formelsamlingar), calculators. Note that the following are not al-
lowed: Solutions manual, copies of OH transparencies, old exams.

Good luck!

Problem 1
Consider a system given hy
y(t) = biu(t — 1) + bou(t — 2) + e(t)

where the measurement noise e(t) is white with zero mean and variance 0. The
parameters by and by are estimated using the least squares method.

(a) Express the asymptotic variances of the estimates by and by as functions of
the input covariance function r,(7) = Eu(t + 7)u(t). 3 points

(b

Assume that the variance of the input must be bounded

Bu?(t) <1
Determine the covariance function of the input so that the parameter esti-
mates b; and by have as low variance as possible. 3 points
Problem 2

Consider the model
y(t) = bu(t — 1) + bou(t — 2)

or written as a linear regression

o'(He, t=1,...,N
@) = (u(t—1) ut—2)

(a) Assume u(t) is a step

=

—~
~

=

0 t<0
“(t):{a, t>0

and that the data are
y(t) = bou(t — 1) + bou(t — 2) +e(t), t=1,...,N

where e(t) is white noise of zero mean and variance \2.

Determine cov(é), var(l;]) and Var(I;Q) for finite values of N. 2 points

(b) Introduce
B = by + by, Ba = by — by

Determine (for finite N) var(8;) and var(f,). 1 point



Rewrite the linear regression as

wo—von o=(1)

with 3 as in part (b). What is ¢(¢)? 2 points
Determine how the least squares estimate 3 depends on data. Also find
cov(f). 3 points

If u(t) were white noise of variance 02, determine (for large values of N)
cov(f) and cov(f). 2 points

Problem 3

Consider identification of a system as a finite impulse response model

y(t) =bu(t — 1)+ ...+ byu(t — n) + (1)

Determine for what model order n the parameters {b;}/_, can be uniquely de-
termined for the following input signals. (Treat the asymptotic case with data
available for t = 1,..., N, where N— cc.)

X, ui(t) =1

Xy ug(t) = (—1)

Xy us( 1

Xy w(t) =sinw,it O0<w,<m

X5 us(t) =sinwit+ 2sinwst 0 <w) <wy <7
(

X ug(t) white noise
6 points
Problem 4
Consider prediction error identification of an ARMA(1,1) process
y(t) +ay(t —1) =e(t) +ce(t — 1)
(a) What is the asymptotic variances of the estimates a and ¢? 4 points
(b) What is the asymptotic variance of the difference a — ¢? 4 points

Problem 5

Consider a first order system
y(t) +ay(t —1) = bu(t — 1) + e(t)
where the input u(#) and the disturbance e(#) are mutually independent white
noise sequences of zero mean, and variances o and A2, respectively.
The parameter vector
6=(ab)"

is to be estimated, and its asymptotic covariance matrix to be determined.

(a) Assume that the least squares method is applied. Determine the asymptotic

covariance matrix. 2 points

(b

Assume that an instrumental variable method is applied with instruments
2(t) = (u(t =1) u(t—2))"
Determine the asymptotic covariance matrix. 3 points

(¢) Assume that an instrumental variable method is applied with instruments
A(t) = (—a(t—1) ut—1))"

where z(t) = %u(t] (We assume that a and b are known when z(t) is
generated). Determine the asymptotic covariance matrix. 3 points

(d) Compare the covariance matrices determined in parts (a) - (¢). Can they be
sorted in some increasing order? 2 points

Problem 6

Consider a pure sinewave signal
y(t) = Asin(wet), 0O0<w,<m, t=1,2,...

(a) Determine the covariance function

1Y
= lim — t t
ry(7) = lim N;y( +7)y(t)
of the signal. 2 points
(b) Of what order is the signal y(¢) persistently exciting? 2 points

(¢) Assume that a second order AR model
y(8) + ary(t = 1) + asy(t — 2) = e(t)

is fitted to measurements of the signal. What are the asymptotic values
(N — o0) of the parameter values? 4 points

(d) Where are the zeros of the polynomial A(z) determined in part (c) located.
Please interprete! 2 points
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y(t) = %u(tfl)+%u(t72)
; 1
(2) W7 (t) 3 ( w(t—1) +u(t—2) u(t—1) —u(t—2) )
a o (ra(0) (1)) ' _o? 1 ra(0)  —ru(1) W7 (1) 05 05
by ) N\ ra(D) 7u(0) ) T N20)—r2(1) \ —ru(l)  m,(0) v T2 | | 1 0
Hence o
ar(b) = var(hy) = o 1y(0) I (N) 1 0
TN RO - 0)
) (d)
(b) Under the constraints R
[r.(1)] < r(0) <1 B () oy
- -\ L -
the variances are minimized if _ 025+ N -1 0.25 05 1 1 v
0.25 0.25 05 0 0
ru(0) =1, r,(1) =0 1 ( 0.25 —0.25 ) ( SN y(t) — 0.5y(1) )
This is achieved, for example, if the input signal is white noise. 0.25(N 7] 1 NiO'QO 0.25+ N —1 0-5y(1)
_ ( w122 Y(s) )
— ey Xo y(s) +2y(1)
Problem 2 .
e (g e 0256+ N—1 025\ _ N 1 -1
@ cov(B) = X7 (¥'¥) =2 ( 0.25 025 ) ~ N-1\ -1 4N-3
i pe . AN -3
u(0) u(—1) 10 var(f) = - var(f,) = \? ¥
P u(l) u(O) _ 1 1 as in part (b)!
u(N—1) u(N—2) 11 (¢)
-1 . A, 0) m(D)\TT A (10
A 1 N N -1 1 —1 oV ~ u u —
cov(d) = N (@79) = N2 ( Nl N1 ) =\ ( S ) cov®) = ( (1) 7(0) No? \ 0 1
5 1 1 - 1 1 A2 20
. R N (A — : _
var(h) = N var(h) = ¥ o ( L ) o) ( 1 -1 ) = Ne? ( 02 )
(b) Problem 3
var(B) = ( 1 ) cov (f) < 1 ) — )2 1 If u(t) is p.e. of order n but not of order n + 1, then FIR models of order n (but
1 N -1 not of order n + 1) can be identified. Hence,
. . 1 24N -3
var(fy) = ( Ll )COV(9)< -1 ) =X N_1 uy=n<l, wuwu=n<l, wu3=>n<2,

uy =>n < 2, us = n < 4, ug = n arbitrary



Problem 4

(a)

-1

o

o
1 T a2 T ac
cov = —
NV
1—ac 1—c?

1 1 ( (1—a?)(1—ac)? (1—a®)(1-c*)(1—ac)

N(c—a)2\ 1—0a?)(1—c*)(1—ac) (1—eA)(1 - ac)?
(b)
JU a 1
var(a —¢) = ( 1 -1 )nov( : ) ( 1 )
— %(cfla)Q [(1 a®)(1—ac)> + (1 — A1 — ac)?
—2(1 - ac)(1 - a*)(1 - )]
= %(1 —a*c?)
Problem 5

(a)

2 [ b2o%4A2 ! X(1-a?)
COV(@) = A - 0 = L b?a?:xz 0
N 0 o2 N 0 2

o2

(b) Use the results on page 268 in the textbook. The matrix R is as follows

r= )= £ (1070 ) (vt we-n) = ()

u(t —2) —bo? 0
The covariance matrix of the estimates becomes

1

Py = VAZR leov(z(t))R T
_aX 0 1y o )T
T Nzl -b o 10
1N (10
T ONBaZ\ 0 B

(c) The matrix R is as follows

=@ =8 () (su-n we-n ) = (R0

)

The covariance matrix of the estimates becomes

Py = %)\QR’lnov(z(t))R’T

) 1 S ) 1
(B 0T (B 0\ (B o
I 0 o2 0 o? 0 o2
1A [ La
- b
NJQ( 0 1)

(d) The variance of the estimate b is the same for all three estimators. The
variance of a differ though. The matrices can be ordered as follows.

Py 2 Poy 2 Py
Problem 6
(a)

N

ry(r) = lim 1 Syt + 1)yt

N—ooo N =

1N
= lim — > A”sin(wot + w,) sin(wot)

N—oo | =1
A? 1 &

- 5 Jim v ;[cos(u}(ﬂ') — c08(2wot + w,T)]
AQ

= 5 cos(wWeT)

(b) The signal y(#) is persistently exciting of order 2. This can be seen as follows.

der,(”(o) ”(”) = 2(0) - r2(1)

ry(1) 7(0) !
= %2(1 — cos®(w,)) = gshﬁ(%) >0

ry(0) (1) 7y(2)
det ryg) ry(0) Ty(g = 75(0) +2r5(1)ry(2) =y (0)ry(2) — 2ry(1)ry (0)

= 1y(0)[ry(0) — ry(2)] = 2ry(1)[r, (0) — r,(2)]

= [ry(0) = ry @)y (0) + 7, (0)ry (2) — 2y (1)]
= %[1 — €08(2w,)][1 + cos(2w,) — 2 cos?(w,)]



= () (e )

- 717colm< 7002(40”) 7(:0:(%) ) ( QCOZ(;?E«L:;;)*] )

d) The polynomial
A(2) = 2> — 2cos(w,)z + 1

has zeros in z = e*™°. These zeros lie on the unit circle. Their argument w,

corresponds precisely to the angular frequency of the sine wave.



