
Leture 4

Predition Error Methods (PEM) (Ch. 7)

Leture 4 System Identi�ation 2005 EKL/TS Page 1/ 25

The Least-Squares Method� Chapter 4: The least squares method applied to stati (deterministi)linear regression models ('(t) deterministi).� What happens when we onsider dynami models?A(q�1;�)y(t) = B(q�1; �)u(t) + e(t)) y(t) = 'T (t)� + e(t)where '(t) = [�y(t� 1) : : : � y(t� na)u(t� 1) : : : u(t� nb)℄T� = [a1 : : : ana b1 : : : bnb ℄TProperties of the least squares estimate^�LS = � 1N NXt=1 '(t)'T (t)��1 1N NXt=1 '(t)y(t)Leture 4 System Identi�ation 2005 EKL/TS Page 2/ 25

Properties: Assume that the true system an be desribed asy(t) = 'T (t)�0 + v(t)Results: The estimate ^�LS will be onsistent ( ^� ! �0 as N !1) if(i) E'(t)'T (t) is nonsingular.(ii) E'(t)v(t) = 0.
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The �rst ondition will be satis�ed in most ases. A few exeptions� The input is not persistently exiting of order nb.� The data is noise-free v(t) � 0 and the model order is hosen toohigh (whih implies that A(q�1) and B(q�1) have ommonfators).� The system operates under feedbak with a low order regulator.The seond ondition is in most ases not satis�ed. A notableexeption is when e(t) is white noise.
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Modi�ations of the Least-Squares Method

To relax the seond onstraint, we will in the following examine twodi�erent ways to modify the least-squares method:(i) Predition error methods. Model the noise as well!(ii) The instrumental variables methods (IV methods) � modifyingthe normal equations assoiated with the least-squares estimate.
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Predition Error Methods (PEM)

Idea:� Model the noise as well ) stohasti models, i.e., the outputsfrom the models are not deterministi.� Minimize the predition errors "(t;�) = y(t)� ^y(tjt� 1;�). Theleast-squares method is a speial ase of this approah; onsiderthe predition error"(t;�) = y(t)� ^y(tjt� 1;�) = y(t)�'T (t)�A general methodology appliable to a wide range of modelstrutures.
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Examples
Find the optimal preditor, ^y(tjt� 1) for the following systemsassuming Ee(t) = 0, Ee(t)e(s) = Æs;t�2.Notie that ^y(tjt� 1) is a funtion of fy(s); u(s)gt�1s=�1.

a) y(t) = e(t)
b) (1� 0:1q�1)y(t) = �0:5q�1u(t) + e(t)

) (1� 0:1q�1)y(t) = �0:5q�1u(t) + (1� 0:8q�1)e(t)
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PreditionsA preditor an be desribed as a �lter that predits the output of adynami system given old measured outputs and inputs. Design thepreditor by(i) Choosing the model struture of y(t), e.g., ARX, OE, orARMAX.(ii) Choosing the preditor, ^y(tjt� 1;�). A general preditor an beviewed as ^y(tjt� 1;�) = L1(q�1;�)y(t) + L2(q�1;�)u(t)where L1(q�1;�) and L2(q�1;�) are onstrained suh that^y(tjt� 1;�) depends on past data.
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Optimal Predition

We will here onsider the general model struturey(t) = G(q�1;�)u(t) +H(q�1;�)e(t)where E[e(t)eT (s)℄ = �(�)Æt;s and G(0;�) = 0.

Goal: Find the optimal mean square preditor ^y(tjt� 1;�), i.e., solvemin^y(tjt�1)E"(t)"T (t)where "(t) = y(t)� ^y(tjt� 1) is the predition error, and ^y(tjt� 1)depends on fy(s); u(s)gt�1s=�1.
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Results:Under the assumptions that(i) z(t) only depends on past measurements(ii) u(t) and e(s) are unorrelated for t < sthen^y(tjt� 1;�) = H�1(q�1;�)G(q�1;�)u(t) + �I �H�1(q�1;�)� y(t)is the optimal mean square preditor, and e(t) the predition error,"(t;�) = y(t)� ^y(tjt� 1;�)= H�1(q�1;�) �y(t)�G(q�1;�)u(t)�= e(t)Hene, E"(t;�)"T (t;�) = �(�)Leture 4 System Identi�ation 2005 EKL/TS Page 10/ 25

Optimal Predition for State Spae Models

As an alternative to the model struture:y(t) = G(q�1;�)u(t) +H(q�1;�)e(t);it is often ommon to use state-spae models:x(t+ 1) = F (�)x(t) +B(�)u(t) + v(t)y(t) = C(�)x(t) + e(t)where v(t) and e(t) are unorrelated white noise sequenes with zeromean and ovariane matries R1(�) and R2(�).In this ase the optimal mean square preditor is given by theKalman �lter (see, page 196).
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Cost FuntionHow do we �nd the best model in the model struture?� Minimize the predition errors "(t;�) for all t. How?� Choose a riterion funtion VN (�) to minimize:^� = argmin� VN (�)where VN (�) depends on "(t;�) is a suitable manner.

Depending on the hoie of model struture, preditor �lters andriterion funtion, the minimization of the loss funtion is moreor less di�ult.
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For single-output systems the following riterion funtion is mostoften used VN (�) = 1N NXt=1 "2(t;�)In general, the ost funtion is hosen asVN (�) = h(RN (�))where h(�) is a salar-valued monotonially inreasing funtion, andRN (�) is the sample ovariane matrix of the predition errors,

RN (�) = 1N NXt=1 "(t;�)"T (t;�):Ex: h(�) = tr (�), or h(�) = det(�).
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A PEM Algorithm

To de�ne a PEM the user has to make the following hoies:� Choie of model struture. How should G(q�1;�), H(q�1;�) and�(�) be parameterized?� Choie of preditor ^y(tjt� 1;�). Usually the optimal meansquare preditor is used.� Choie of riterion funtion V (�). A salar-valued funtion of allthe predition errors "(1;�); : : : ; "(N;�), whih will assess theperformane of the preditor used.
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Computational AspetsI. Analytial solution exists

If the preditor is a linear funtion of the unknown parameters,^y(tjt� 1;�) = 'T (t)�;and the riterion funtion VN (�) is simple enough, a losed formsolution an be found. For example, whenVN (�) = 1N NXt=1 "2(t;�) = 1N NXt=1 �y(t)�'T (t)��2 ;it is lear that the PEM is equivalent to linear regression (the leastsquares method). This holds for example for ARX or FIR models butnot for ARMAX and OE models.Leture 4 System Identi�ation 2005 EKL/TS Page 15/ 25

II. No analytial solution exists

For general riterion funtions, and preditors that dependnon-linearly on the data, a numerial searh algorithm is required to�nd the � that minimizes VN (�).Numerial minimization:� Nonlinear ) loal minima may exist.� Time onsuming (onvergene rate) and omputationallyomplex.� Initialization.
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Di�erent (standard) methods available:� The Newton-Raphson algorithm^�(k+1) = ^�(k) � �k[V 00(^�(k))℄�1V 0(^�(k))The derivatives of the loss funtion an be omputationallyomplex to evaluate. Fast onvergene.� The Gauss-Newton algorithm is a omputationally lessintensive algorithm with a theoretially lower rate of onvergenewhih an be used as an alternative.� Gradient based methods are simpler to apply, but has a slowonvergene rate.� Grid searh. Searh the whole parameter spae. VERY timeonsuming.Leture 4 System Identi�ation 2005 EKL/TS Page 17/ 25

Theoretial Analysis

Assumptions� The data fu(t); y(t)g are stationary proesses.� The input is persistently exiting.� V 00N (�) is nonsingular around the minimum points of VN (�).� The �lters G(q�1;�) and H(q�1;�) are smooth di�erentiablefuntions of the parameter vetor.What happens with the estimate ^�N as N !1 ?
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Consisteny: ^�1 , limN!1 ^�N = argmin� V1(�)

V1(�) = limN!1 1N NXt=1 "2(t;�) = E"2(t;�)

The PEM estimates are robust and onsistent:� As N !1, ^�N onverges to a minimum point of V1(�).� If the model struture inludes the true system (DT non-empty)then the PEM is system identi�able (^�1 2 DT ).� If there is a unique vetor ^�1 that gives an exat desription ofthe system (DT ontains one point), then the system isparameter identi�able. The PEM estimate is onsistent(^�N ! �0 as N !1).Leture 4 System Identi�ation 2005 EKL/TS Page 19/ 25

Asymptoti distribution: Asymptoti distribution of theparameter estimates (assuming that the model is parameteridenti�able, ^�N ! �0)� The parameter estimation errors are asymptotially Gaussiandistributed with zero mean and variane PpN(^�N � �0)! N(0;P)� For single-output systems the ovariane matrix of the parameterestimates are given byP = � �E	(t;�0)	T (t;�0)��1where 	(t;�) = ���"(t;�)�� �T

and Ee(t)eT (t) = �.Leture 4 System Identi�ation 2005 EKL/TS Page 20/ 25



Auray of linear regression for stati/dynami aseStati ase (N �nite)� ^� unbiased.� pN(^�N � �0) is Gaussian distributed N(0; P ),

P = � 1N NXt=1 '(t;�0)'T (t;�0)!�1

Dynami ase (for N !1).� ^� is onsistent.� pN(^�N � �0) is asymptotially Gaussian distributed N(0; P ).P = � �E'(t;�0)'T (t;�0)��1
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Statistial e�ieny� A method is said to be statistially e�ient if its estimates havethe smallest possible variane.� The smallest possible variane of any (asymptotially) unbiasedestimator is given by the Cramér-Rao lower bound.� For Gaussian disturbanes the PEM method is statistiallye�ient (equivalent to the maximum likelihood (ML) method) if� Single-output: VN (�) = 1N PNt=1 "2(t; �).� Multi-output: VN (�) = tr (SRN (�)) and S = ��1(�0), orVN (�) = det(RN (�)).
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Approximation

The true system is often more omplex than the model struture(under-parametrization, DT is empty).� Still, ^�N onverges to a minimum point of V1(�) as N !1.� We annot expet G(q�1;�) � G0(q�1) and H(q�1;�) � H0(q�1)to hold.� The model-�t an be ontrolled by pre-�ltering the data,uF (t) = F (q�1)u(t); yF (t) = F (q�1)y(t);or by hoosing an appropriate input.� The OE model struture is useful.
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Conlusions� The PEM is a general method to obtain a parametri model of adynami system. The following hoies de�ne a predition errormethod:� Choie of model struture;� hoie of preditor;� hoie of riterion funtion.� The PEM priniple is to minimize the predition errors given aertain model struture and preditor.� The PEM priniple leads to parameter estimates that haveseveral nie properties (in general, onsistent and statistiallye�ient estimates).Leture 4 System Identi�ation 2005 EKL/TS Page 24/ 25



� Approximation. The PEM is useful also for under-parameterizedmodels. The model-�t an be ontrolled by pre-�ltering the data,or by hoosing an appropriate input.� If the predition errors depend linearly on the parameter vetorthe PEM estimates are obtained through linear regression (e.g.,ARX and FIR models).� In the ase of more ompliated model strutures a nonlinearsearh algorithm is required to obtain the PEM estimates (e.g.,ARMAX, OE, et.).
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