Lecture 2

- Linear regression
- The least squares method
- Properties of the (deterministic) least squares method
- BLUE
- Computational aspects

Lecture 2

System Identification 2005 EKL/TS

Page 1/ 15

Page 3/ 15

Linear Regression Cont'd

Model structure (\mathcal{M}) :

$$y_m(t) = \varphi^T(t)\boldsymbol{\theta}, \quad t = 1, \dots, N$$
 (1)

where $y_m(t)$ is the model output, $\varphi(t) \in \mathbb{R}^{n \times 1}$ is a vector of known quantities and $\theta \in \mathbb{R}^{n \times 1}$ is a vector of unknown quantities.

The model (1) can be compactly written as

$$oldsymbol{Y}_m = oldsymbol{\Phi}oldsymbol{\theta}, \quad oldsymbol{Y}_m = egin{bmatrix} y_m(1) \\ \vdots \\ y_m(N) \end{bmatrix}, oldsymbol{\Phi} = egin{bmatrix} oldsymbol{arphi}^T(1) \\ \vdots \\ oldsymbol{arphi}^T(N) \end{bmatrix}$$
 (2)

• Linear regression can be used also for certain non-linear models.

Linear Regression

SI procedure: Collect data, choose a model class, find the best model in the model class, validation.

- Linear regression models. Models that are linearly parametrized.
 - Computationally simple.
 - Simple to implement.
 - Low memory consumption.
 - Common in signal processing. Ex. Echo cancellation.
- Original work by Gauss 1809.
- Starting point of system identification.

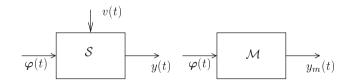
Lecture 2

System Identification 2005 EKL/TS

Page 2/ 15

Linear Regression Cont'd

Problem: Find an estimate of θ given measurement $y(1), \varphi(1), \dots, y(N), \varphi(N)$.



- Noiseless case (v = 0, $\mathcal{M} = \mathcal{S}$). Exact solution exists.
- What to do when noise v(t) is present and $\mathcal{M} \neq \mathcal{S}$?

Least Squares (Optimization)

Introduce the equation error

$$\varepsilon(t) = y(t) - y_m(t) = y(t) - \boldsymbol{\varphi}^T(t)\boldsymbol{\theta}, \quad t = 1, \dots, N$$

or compactly

$$\varepsilon = Y - Y_m = Y - \Phi \theta$$

Least squares method: Choose θ such that $\varepsilon^2(t)$ is small for all t:

$$\hat{\boldsymbol{\theta}}_{LS} = rg \min_{\boldsymbol{\theta}} V(\boldsymbol{\theta}), \quad V(\boldsymbol{\theta}) = \frac{1}{2} \sum_{t=1}^{N} \varepsilon^2(t) = \frac{1}{2} \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon}$$

Lecture 2

System Identification 2005 EKL/TS

Page 5/ 15

Least Squares (Geometric Approach)

Model: $Y_m = \Phi \theta = \sum_{i=1}^n \Phi_i \theta_i$, where $\Phi = \begin{bmatrix} \Phi_1 & \cdots & \Phi_n \end{bmatrix}$.

Measurements: Y.

Y and Φ_i are vectors in the vector space $\mathbb{R}^{N\times 1}$.

Objective: Find a linear combination of the vectors Φ_i , i = 1, ..., n (Y_m) , that approximates Y as well as possible.

Solution: $\{\Phi_i\}_{i=1}^n$ span an *n*-dimensional subspace D_n . The best approximation of Y in D_n is the orthogonal projection of Y on D_n .

Results: Assume that $\mathbf{\Phi}^T \mathbf{\Phi}$ is invertible, then

$$\hat{\boldsymbol{\theta}}_{LS} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{Y} = \left(\sum_{t=1}^N \boldsymbol{\varphi}(t) \boldsymbol{\varphi}^T(t)\right)^{-1} \sum_{t=1}^N \boldsymbol{\varphi}(t) y(t)$$

Weighted least squares estimate:

$$\hat{\boldsymbol{\theta}}_{WLS} = \arg\min_{\boldsymbol{\theta}} V(\boldsymbol{\theta}), \quad V(\boldsymbol{\theta}) = \frac{1}{2} \boldsymbol{\varepsilon}^T \boldsymbol{W} \boldsymbol{\varepsilon}$$

$$\Rightarrow \quad \hat{\boldsymbol{\theta}}_{WLS} = (\boldsymbol{\Phi}^T \boldsymbol{W} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{W} \boldsymbol{Y}$$

where \boldsymbol{W} is symmetric $(\boldsymbol{W}^T = \boldsymbol{W})$ and positive definite.

Rem: $oldsymbol{W} = oldsymbol{I} \Rightarrow \hat{oldsymbol{ heta}}_{WLS} = \hat{oldsymbol{ heta}}_{LS}.$

Lecture 2

System Identification 2005 EKL/TS

Page 6/ 15

- Define the inner product: $\langle x, y \rangle = x^T y$.
- The approximation error $Y Y_m$ is orthogonal to Φ_i , $i = 1, \ldots, n$

$$\langle \boldsymbol{\Phi}_i, \boldsymbol{Y} - \boldsymbol{Y}_m \rangle = \boldsymbol{\Phi}_i^T (\boldsymbol{Y} - \boldsymbol{Y}_m) = 0, \quad i = 1, \dots, m$$

Consequently,

$$\boldsymbol{\Phi}^T(\boldsymbol{Y} - \boldsymbol{Y}_m) = \boldsymbol{0}$$

• Estimated model: $\hat{Y}_m = \Phi \hat{\theta}$ implies that

$$\Phi^T(Y - \Phi\hat{\theta}) = 0 \quad \Rightarrow \hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T Y = \hat{\theta}_{LS}$$

Rem: Using the scalar product $\langle x, y \rangle = x^T W y$ yields the weighted least squares estimate.

Least Squares (Statistical Properties)

To explore the properties of the least squares estimate we need to specify the system, i.e., we need to make some assumptions about the generating data.

Assumptions:

- $\varphi(t)$ is deterministic and known. (Quite restrictive assumption!)
- System: $y(t) = \varphi^T(t)\theta_0 + e(t)$, where e(t) is a sequence of random variables, E e(t) = 0 and $E e(t)e(s) = R_{ts}$. Compactly written as

$$Y = \Phi \theta_0 + e$$
, $\mathbb{E} e = 0$, $\mathbb{E} e e^T = R$

Rem: If $\mathbf{R} = \lambda^2 \mathbf{I}$ then e(t) is white noise with variance λ^2 .

System Identification 2005 EKL/TS Lecture 2

Page 9/ 15

Page 11/ 15

Def: The estimate $\hat{\theta}_1$ is statistically more efficient than $\hat{\theta}_2$ if

$$\cos \hat{\boldsymbol{\theta}}_1 \leq \cos \hat{\boldsymbol{\theta}}_2$$

Question: Which choice of W will minimize $\cos \hat{\theta}_{WLS}$?

Result: The choice $W = R^{-1}$ yields optimal accuracy:

- $\hat{\theta}_{WLS} = (\Phi^T R^{-1} \Phi)^{-1} \Phi^T R^{-1} Y$
- $\operatorname{cov} \hat{\boldsymbol{\theta}}_{WIS} = [\boldsymbol{\Phi}^T \boldsymbol{R}^{-1} \boldsymbol{\Phi}]^{-1}$

In this case $\hat{\theta}_{WLS}$ is known as the BLUE (best linear unbiased estimator) or the Gauss-Markov estimate.

Least Squares (Statistical Properties) - Results

- The (weighted) least squares estimate is unbiased:
 - $\mathbf{E} \hat{\boldsymbol{\theta}}_{WLS} = \boldsymbol{\theta}_0$
- Covariance matrix, $\cos \hat{\theta} = \mathbb{E}(\hat{\theta} \mathbb{E}\hat{\theta})(\hat{\theta} \mathbb{E}\hat{\theta})^T$:

$$-\operatorname{cov}\hat{\boldsymbol{\theta}}_{WLS} = [\boldsymbol{\Phi}^T \boldsymbol{W} \boldsymbol{\Phi}]^{-1} \boldsymbol{\Phi}^T \boldsymbol{W} \boldsymbol{R} \boldsymbol{W} \boldsymbol{\Phi} [\boldsymbol{\Phi}^T \boldsymbol{W} \boldsymbol{\Phi}]^{-1}$$

$$- \cos \hat{\boldsymbol{\theta}}_{LS} = [\boldsymbol{\Phi}^T \boldsymbol{\Phi}]^{-1} \boldsymbol{\Phi}^T \boldsymbol{R} \boldsymbol{\Phi} [\boldsymbol{\Phi}^T \boldsymbol{\Phi}]^{-1}$$

$$-R = \lambda^2 I \Rightarrow$$

$$\cos \hat{\boldsymbol{\theta}}_{LS} = \frac{\lambda^2}{N} \left[\frac{1}{N} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \right]^{-1} = \frac{\lambda^2}{N} \left[\frac{1}{N} \sum_{t=1}^{N} \boldsymbol{\varphi}(t) \boldsymbol{\varphi}^T(t) \right]^{-1}$$

- If e(t) is Gaussian distributed $e(t) \sim N(0, \mathbf{R})$, Φ deterministic, then $\hat{\boldsymbol{\theta}}_{WLS} \sim N(\boldsymbol{\theta}_0, \cos \hat{\boldsymbol{\theta}}_{WLS})$. (Holds for finite N)
- $\hat{\boldsymbol{\theta}}_{WLS}$ is very often consistent: $\hat{\boldsymbol{\theta}}_{WLS} \to \boldsymbol{\theta}_0, N \to \infty$.

Lecture 2

System Identification 2005 EKL/TS

Page 10/15

- BLUE = Best Linear Unbiased Estimator.
- White noise, $\mathbf{R} = \lambda^2 \mathbf{I}$. BLUE yields the same estimate as the unweighted least squares method.
- If e(t) is Gaussian, then BLUE yields the best possible estimate! If e(t) is non-Gaussian, then there might exist better non-linear estimates.
- BLUE can be derived also for singular R.

Computational Aspects

The least squares solution $(\mathbf{\Phi} \in \mathbb{R}^{N \times n})$

$$\bullet \ \hat{\boldsymbol{\theta}}_{LS} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{Y} = \left(\sum_{t=1}^N \boldsymbol{\varphi}(t) \boldsymbol{\varphi}^T(t)\right)^{-1} \sum_{t=1}^N \boldsymbol{\varphi}(t) \boldsymbol{y}(t)$$

is unsuitable for numerical implementation.

Alternatives: Avoid the inverse!

- The normal equations: $(\mathbf{\Phi}^T \mathbf{\Phi}) \hat{\boldsymbol{\theta}}_{LS} = \mathbf{\Phi}^T \boldsymbol{Y}$.
- Solve an overdetermined linear system of equations: $Y = \Phi \hat{\theta}_{LS}$. (Recall that $Y Y_m = Y \Phi \theta$ should be small.)
 - QR factorizations
 - SVD factorizations

Lecture 2

Lecture 2

System Identification 2005 EKL/TS

Page 13/ 15

Conclusions

- Regression models describes a large class of dynamic systems (linear w.r.t the parameters).
- The least squares method is fundamental in system identification, and can be derived from various starting points.
- We have assumed that Φ is a known and deterministic matrix. Problems when this matrix is a function of u(t) and y(t) (ex. ARX-model).

System Identification 2005 EKL/TS

Page 15/ 15

QR factorization: Let $\Phi = QR$, where $Q \in \mathbb{R}^{N \times N}$ is orthogonal $(Q^TQ = I)$ and $R \in \mathbb{R}^{N \times n}$ is upper triangular. Then, instead of solving

$$Y = \Phi \theta$$

we can equally well solve

$$Q^T Y = Q^T \Phi \theta = R \theta$$

which is easy due to the structure of R.

- Requires more computations than solving the normal equations.
- Less sensitive to rounding errors.

Rem: MATLAB: $\hat{\boldsymbol{\theta}} = \boldsymbol{\Phi} \backslash \boldsymbol{Y}$

Lecture 2

System Identification 2005 EKL/TS

Page 14/ 15