Lecture 2

e Linear regression

The least squares method

Properties of the (deterministic) least squares method

e BLUE

Computational aspects
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Linear Regression Cont’d

Model structure (M):
ym(t) =" (1), t=1,...,N (1)

where y,, (t) is the model output, (t) € R**! is a vector of known
quantities and @ € R"*! is a vector of unknown quantities.

The model (1) can be compactly written as

Ym(1) ' (1)

Ym () ‘PT(N)

e Linear regression can be used also for certain non-linear models.

Linear Regression

SI procedure: Collect data, choose a model class, find the best model
in the model class, validation.
e Linear regression models. Models that are linearly parametrized.
— Computationally simple.
— Simple to implement.
— Low memory consumption.

— Common in signal processing. Ex. Echo cancellation.
e Original work by Gauss 1809.

e Starting point of system identification.
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Linear Regression Cont’d

Problem: Find an estimate of @ given measurement
y(1), (1), ..., y(IN), p(N).

\L u(t)

NN S M N

P(t) y(t) () Ym (1)

e Noiseless case (v =0, M = §). Exact solution exists.

e What to do when noise v(t) is present and M # S?
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Least Squares (Optimization)

Introduce the equation error

or compactly
e=Y-Y,,=Y &0

Least squares method: Choose 8 such that 2() is small for all #:

N
. 1 1
05 = arg mein v(e), V()= 3 ;:1 e2(t) = §sTs
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Least Squares (Geometric Approach)

Model: Y,, = ®0 = 3.7, &;0;, where & = |®, .. @n}.
Measurements: Y.
Y and @; are vectors in the vector space RYV>1.
Objective: Find a linear combination of the vectors ®;,i=1,...,n

(Y ), that approximates Y as well as possible.

Solution: {®;}" ; span an n-dimensional subspace D,,. The best

approximation of Y in D,, is the orthogonal projection of Y on D,,.
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Results: Assume that @7 ® is invertible, then
: N 4N
brs = (27®) "@TY = (D ee’ (1) D eyt
t=1 t—1
Weighted least squares estimate:
N 1
Oy s = arg mgin V), V()= EsTWs
= Owis= (TWe) @TWY
where W is symmetric (W’ = W) and positive definite.
Rem: W =1 = éWLS = éLS.
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e Define the inner product: < z,y >= a7 y.
e The approximation error ¥ — Y, is orthogonal to ®;,
i=1,...,n
<®)Y - Y,>=® (Y -Y,)=0 i=1,....m
Consequently,
(Y -Y,,)=0
e Estimated model: Ym = &0 implies that
(Y -®0)=0 =6=(3"®) 'Y =05
Rem: Using the scalar product < o,y >= 7 Wy yields the
weighted least squares estimate.
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Least Squares (Statistical Properties)

To explore the properties of the least squares estimate we need to
specify the system, i.e., we need to make some assumptions about

the generating data.
Assumptions:
e (t) is deterministic and known. (Quite restrictive assumption!)

o System: y(t) = T (t)0, + e(t), where e(t) is a sequence of
random variables, Ee(t) = 0 and Ee(t)e(s) = Rys. Compactly

written as
Y = 86, + e, Ee=0, Eee’ =R

Rem: If R = A2 then e(t) is white noise with variance A\2.
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Def: The estimate él is statistically more efficient than ég if

cov 91 < cov ég

Question: Which choice of W will minimize cov éWLS ?
Result: The choice W = R™! yields optimal accuracy:
e Oyis = (‘I>TR71<I>)71<I>TR’1Y
e cov éWLS = [@TR7]<I>]*]

In this case éW’LS is known as the BLUE (best linear unbiased

estimator) or the Gauss-Markov estimate.

Least Squares (Statistical Properties) - Results

e The (weighted) least squares estimate is unbiased:
~ Efwrs = 60
e Covariance matrix, cov@ =E (§ —E0)(6 —E8)T:
— covOys = [BTWB)" 1T WRWS[®T W ]!
—covl,s = [®T®] o R®[®T B] !
- R=XNI=
covlrs = N[ @78 = %[ Tl e ()]
e If e(t) is Gaussian distributed e(t) ~ N(0, R), ® deterministic,
then Owrs ~ N (0o, covOwrs). (Holds for finite N)

-1

e Oy s is very often consistent: Oy g — Og, N — 0.
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e BLUE = Best Linear Unbiased Estimator.

e White noise, R = A2I. BLUE yields the same estimate as the

unweighted least squares method.

e If ¢(t) is Gaussian, then BLUE yields the best possible estimate!
If e(t) is non-Gaussian, then there might exist better non-linear

estimates.

e BLUE can be derived also for singular R.
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Computational Aspects I
The least squares solution (& € RV*n)
) Tad) laTl N -1 N
¢ Os=(2'®) @'Y = (2 0t)e"(t) X ety
is unsuitable for numerical implementation.
Alternatives: Avoid the inverse!

e The normal equations: (<I>T<I>) éLg =Ty,

e Solve an overdetermined linear system of equations: Y = <I>9L5.
(Recall that Y — Y, =Y — ®6 should be small.)

— QR factorizations

— SVD factorizations
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e Regression models describes a large class of dynamic systems
(linear w.r.t the parameters).

e The least squares method is fundamental in system identification,
and can be derived from various starting points.

e We have assumed that ® is a known and deterministic matrix.
Problems when this matrix is a function of u(t) and y(t) (ex.
ARX-model).
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QR factorization: Let ® = QR, where Q € RV*V ig orthogonal
(QTQ =I) and R € RVN*" is upper triangular. Then, instead of
solving

Y = ®60
we can equally well solve
Q'Y =Q"®06 = RO
which is easy due to the structure of R.
e Requires more computations than solving the normal equations.
e Less sensitive to rounding errors.

Rem: MATLAB: 6 = &\Y
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