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e Model Parameterizations (Ch. 6)
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Parametric models:
Postulate a model G(q, 0) parameterized by 6.
e Easy to use for simulation, control design, etc.
e Often accurate models.
e Requires some work...
e Example: FIR model
y(t) = u(t) + byu(t — 1) + bou(t — 2)
=G(qg10)=1+big ' +bg % 0=[b1b]"
Question: Can we determine Go(q) or {go(k)} without postulating a
parameterized model?
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System Identification

Obtain a model of a system from measured inputs and outputs.

Type of model depends on application and system. Often we assume
that the true system can be described as a LTI (linear time-invariant)

system:
y(t) = Golq)u(t) + v(t) (1a)

or, equivalently,
y(t) =D go(kult — k) +v(1) (1b)
k=1

Question: How do we determine the model Go(q) or {go(k)}?
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Nonparametric Identification

Nonparametric models:
Determine G or {go(k)} without parameterizing.
e Simple to obtain.

e Results often in graphs or tables which can not easily be used for

simulation, etc.
e Often used to validate parametric models.

e Transient analysis, correlation analysis, frequency analysis,

spectral analysis.
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Transient Analysis

Impulse response analysis: Applying the input

kE, t=0
0, t#0

to (1b) gives the output
y(t) = kgo(t) + v(t)

which motivates the impulse response estimate

) y(t)
t) = —=
9(t) = =
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Ex: Step-response (true — solid, measured — x)

15
— ¥
- -

Yo

Step-response analysis Applying the input

kE, t>0
0, t<0

u(t) =

gives the output

y(t) =k  go(k) +v(t)
k=1

which motivates the impulse response estimate

R y(t) —y(t—1)
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Lecture 3 System Identification 2005 EKL/TS Page 6/ 38
( A

Transient analysis
e Input taken as impulse or step.
e Model consists of recorded output, or an estimate of go(k).

e Convenient for deriving crude models. Gives estimates of

dominating time constants, time delays and static gain.
e Sensitive to noise.

e Poor excitation.

L J
Lecture 3 System Identification 2005 EKL /TS Page 7/ 38

. J
Lecture 3 System Identification 2005 EKL/TS Page 8/ 38




Correlation Analysis

System:
y() = go(R)ult — k) +o(t)
k=1
where u(t) is a stochastic process which is independent of v(¢).
Multiplying by u(t — 7) and taking expectation yields

o0

ryu(T) = go(k)ru(T — k)
k=1

which is known as the Wiener-Hopf equation.

In practice, truncate the sum and solve the resulting system of eq.

M
Fyu(T) = g(k)fu (T — k)
k=1
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Estimates of the covariance functions.
e First choice:
1 N—1
P = k) (720
k=1
e Second choice:
1 N—1
Fyu(T) = N y(k +1)u(k) (r>0)
k=1
Which one to prefer?
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Frequency Analysis

Estimate Go(e™)!

a cos(wt)

— Go(?) | @|Go(e'™)| cos(wit + ) + v(?)

e Repeat experiment for different w (¢ =1,..., N).

e Determine the phase shift and the amplitude of the output.
e Results in a Bode plot (|Go(e™)| and arg Go(e*)).

e Sensitive to noise. Require long experiments.

e Gives basic information about the system.
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Spectral Analysis
e The correspondence of the Wiener-Hopf equation in the
frequency domain is given by:
By (w) = Ge™) Py (w)
e An estimate of the transfer function can be obtained as:
Gle ™) = Dy (w)/Pu(w)
e Use estimates of the spectral densities, e.g.,
1 N
Dy (w) TN Pyu(T)e™ "™
T=—N
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Figure 1: Spectral analysis, N = 256: Left: Periodogram. Right:
Bartlett window M = 128.
. J

.

e Errors in 7,,(7) are summed together = not consistent!
— N large = total (square) error is large even if the error in
yu(T) is small for all 7.

— Tyu(T) decreases slowly = poor estimate of 7, (7) for large

values of 7.

e Better estimates are obtained if a lag window, w(t), is used:

Tyu (T)w(’l’)@iiﬂd

T=—N

e Length of lag window (M) - compromise between bias and
variance (high resolution and reducing erratic fluctuations).
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Summary - Nonparametric Methods

e Results often in graph or table (step response, weighting

function, transfer function etc.).
e Transient analysis (step-response, impulse response).
e Frequency analysis (sinusoidal input).
e Correlation analysis (weighting function estimate).
e Spectral analysis (transfer function estimate).

e Useful for obtaining crude estimates of time constants, cut-off

frequencies etc. or for model validation.
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Input Signals (Ch. 5) I

The quality of the model is dependent on an appropriate choice of

input signal.

Examples of useful input signals are:
e Step function.
e Pseudorandom binary sequence (PRBS).
e Autoregressive moving average process (ARMA).

e Sum of sinusoids.

.
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Step Function

k, t>0
0, t<0

u(t) =

Properties

e Mostly used for transient analysis: overshoot, static gain, major

time constants.

e Limited usability for parametric modeling.

.

.

Most often the input signal is characterized by its first and second

order moments:
m = FEu(t)
(1) = E(u(t + 1) — m)(u(t) — m)T

and/or its spectral density:

Rem: Deterministic signals

Eu(t) = lim S u(t)
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PseudoRandom Binary Sequence (PRBS)

A PRBS wu(t) is a periodic, deterministic signal with white-noise-like

properties.

u(t) =rem(A(q)u(t),2) = rem(ayu(t — 1) + - -+ + a,u(t — n),2)

Properties

e The signal shifts between two levels in a certain fashion
depending on A(q).

e Spectral characteristics is determined by A(g) and, in particular,
by the period length M = 2" — 1.

e Deterministic sequence behaving as noise (reproducibility).
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Figure 2: PRBS sequence, p—0.5, M = oc. Left: Example of realiza-
tion. Right: Spectral density.
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Figure 3: ARMA(2,2) process. Left: Example of realization. Right:
Spectral density.
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ARMA Process

Alg y(t) = Clge(t)
where e(t) is white noise with Fe(t) = 0 and Ee?(t) = A\2.

Properties

e The signal y(t) can be obtained by filtering white noise.

e The filters can be chosen to obtain almost any desired frequency

characteristics.

e The spectral density of an ARMA process y(t) is given by:

)\2

T on

C(Giw)

q’y (w) (Eiw)

N
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Sum of Sinusoids .

M
Ay SIN (Wit + ©)

m=1

Properties
e User parameters: @, Wy, and @,.
e Covariance function given by:
M a2,
5 cos(wmt + ©m)

m=1
e Spectral density given by:
M
a

D(w) = Tm[(s(w—wm)—l—ﬁ(w—l—wm)]
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Figure 4: Sum of 4 sinusoids. Left: Signal. Right: Spectral density.
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(i) The matrix:
r,(0) ry(1) - ru(n—1)
ru(=1)  7r,(0)
Ry(n) =
T“(l *’I’L) Tu,(O)
is positive definite.
e Another definition: det R, (n) # 0.
e And another: wu(t) is p.e. of order n if ®,(w) # 0 on at least n
points in the interval —7 < w < 7.
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Persistent Excitation

To obtain estimates of a parametric model the input signal has to be
“rich” enough to excite all modes of the system.

A input signal is said to be persistently exciting (p.e.) of order n if:

(i) The following limit exists:

N

. 1 T
ru(T) igggoﬁf:l u(t +7)u” ()

Rem: u(t) ergodic implies

’l“u(T) =FE 71’(t + T)UT (t)
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An input signal that is p.e. of order 2n can be used to consistently

estimate a parametric model of order < n.
e A step function is p.e. of order 1.
e A PRBS with period M is p.e. of order M.
e An ARMA process is p.e. of any finite order.

e A sum of m sinusoids is p.e. of order 2m (if w,, # 0 and w,,, # 7).
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Another important observation!

A parametric model becomes more accurate in the
frequency region where the input signal has the major part

of its energy.

A physical process is often of low frequency character = use low-pass

filtered signal as input.

J
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Model Parameterizations (Ch.6)

Mathematical models can be derived from:
- Physical modeling
- Identification

Classification of mathematical models

- SISO - MIMO

- Linear models - Nonlinear models

- Parametric models - Nonparametric models

- Time-invariant models - Time-varying models

- Time domain models - Frequency domain models
- Discrete-time models - Continuous-time models

- Deterministic models - Stochastic models
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Summary - Input Signals I

e The choice of input signal determines the quality of the final
parametric model.

e The obtained parametric model is more accurate in frequency
regions where the input signal contains much energy.

e An input signal has to be rich enough to excite all interesting
modes of the system (persistently exciting of sufficiently high
order).

e In practice there might be some restrictions on the input.
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General model structure (SISO)
y(t) = G(g '.0)ult) + H(g . 0)e(t)
B —1 big— "k _|_b 7nk71+...+b —np—np+1
G(q*170) _ (q 1) _ 14 24 - ny, 4
A(g™1) 1+a1gt+ ... +ay,q "
C(g! l+eig ' 4. +ea g™
H(qil 0) _ (q 1) _ 149 - n.q
D(g™') 1+dig ' +.. +dn,q
where e(t) is white noise with variance A2, and
T
9=[a] e Qpy, b] bnb C1 c.. Cp, d] dnd
Rem: Often A2 = A\%(0).
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Assumptions:
e Time-delay n; > 1 = G(0,0) =0 (also H(0,0) = 1)

o H (g%, 0) and H (¢ 1,0)G(¢7 ", 0) are asymptotically stable.
Often H(g™!,8) also needs to be asym. stable.
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Time series models (no input signal)

ARMA
Alg Ny(t) = Clg He(t)
AR
Alg Dy(t) = e(t)
MA

y(t) = Clq~ Me(t)

Applications: Times-series modeling is useful in various disciplines,

such as, economy, astrophysics, speech, etc.

L J
Lecture 3 System Identification 2005 EKL /TS Page 35/ 38

( )
Commonly used simplified models:

ARMAX

A(g™Hy(t) = Blg~ Hu(t) + Cg~He(t)
Rem: A(q ') describes the dynamics: Here the input and the noise
is governed by the same dynamics.

ARX
A(g y(t) = Blg u(t) + e(t)
FIR
y(t) = Bla~"u(t) +e(t)
OE )
B(q~
y(t) = u(t) + e(t
(1) = Sy ult) + e(t)
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Uniqueness and Identifiability
Uniqueness:

Let the true system S be described by Gg, Hy and A3.

Introduce the set
Dr = {G‘G() = G(qil, 0)7H() = H(q’l., 9)7 )\% = )\2(9)}

e D empty = underparameterized model structure.

e Dy contains several points = overparameterized model
structure. Numerical problems are likely to occur.

e Dr contains one point = Ideal case! The system is uniquely
described by the model structure (6 = 6y).

. J
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Identifiability:

e System Identifiable (SI): Dz is nonempty, and 6 — D7 as
N — oc.

e Parameter Identifiable (PI): If the system is ST and Dt contains
one point (6 — 6;).

In other words, if the choice of model, input signal and identification
method makes the estimated parameter vector, é, converge (with
probability one, as N — oc) ) to a parameter vector that perfectly
describes the system as the number of data points tend to infinity
then the system is said to be system identifiable. If the system is
uniquely described by the model and system identifiable then the
system is said to be parameter identifiable.

.
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Summary - Model Parameterizations

It is essential that the model structure suits the actual system.

Many standard model structures are available with different
approaches of how to model the influence of the input and t
disturbances.

Finding the correct, or best, model structure and model ord
normally an iterative procedure (Ch. 11).

A model should ideally be unique and the complete experimental
set-up should be such that the system is parameter identifiable.

Not included: Ex 6.3, 6.4, 6.6, continuous-time models.
“Kursivt”: Ex 6.5.
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