Lecture 3

- Nonparametric Methods (Ch. 3)
- Input Signals (Ch. 5)
- Model Parameterizations (Ch. 6)

Lecture 3

System Identification 2005 EKL/TS

Page 1/ 38

Page 3/ 38

#### Parametric models:

Postulate a model  $G(q, \theta)$  parameterized by  $\theta$ .

- Easy to use for simulation, control design, etc.
- Often accurate models.
- Requires some work...
- Example: FIR model

$$y(t) = u(t) + b_1 u(t-1) + b_2 u(t-2)$$
  

$$\Rightarrow G(q^{-1}, \theta) = 1 + b_1 q^{-1} + b_2 q^{-2}, \quad \theta = [b_1 \ b_2]^T$$

**Question:** Can we determine  $G_0(q)$  or  $\{g_0(k)\}$  without postulating a parameterized model?

### System Identification

Obtain a model of a system from measured inputs and outputs.

Type of model depends on application and system. Often we assume that the true system can be described as a LTI (linear time-invariant) system:

$$y(t) = G_0(q)u(t) + v(t)$$
 (1a)

or, equivalently,

$$y(t) = \sum_{k=1}^{\infty} g_0(k)u(t-k) + v(t)$$
 (1b)

**Question:** How do we determine the model  $G_0(q)$  or  $\{g_0(k)\}$ ?

Lecture 3

System Identification 2005 EKL/TS

Page 2/ 38

## Nonparametric Identification

## Nonparametric models:

Determine  $G_0$  or  $\{g_0(k)\}$  without parameterizing.

- Simple to obtain.
- Results often in graphs or tables which can not easily be used for simulation, etc.
- Often used to validate parametric models.
- Transient analysis, correlation analysis, frequency analysis, spectral analysis.

## Transient Analysis

Impulse response analysis: Applying the input

$$u(t) = \begin{cases} k, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

to (1b) gives the output

$$y(t) = kg_0(t) + v(t)$$

which motivates the impulse response estimate

$$\hat{g}(t) = \frac{y(t)}{k}$$

Lecture 3

System Identification 2005 EKL/TS

Page 5/ 38

Ex: Step-response (true – solid, measured –  $\times$ )



Step-response analysis Applying the input

$$u(t) = \begin{cases} k, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

gives the output

$$y(t) = k \sum_{k=1}^{t} g_0(k) + v(t)$$

which motivates the impulse response estimate

$$\hat{g}(t) = \frac{y(t) - y(t-1)}{k}$$

Lecture 3

System Identification 2005 EKL/TS

Page 6/38

## Transient analysis

- Input taken as impulse or step.
- Model consists of recorded output, or an estimate of  $g_0(k)$ .
- Convenient for deriving crude models. Gives estimates of dominating time constants, time delays and static gain.
- Sensitive to noise.
- Poor excitation.

#### Correlation Analysis

System:

$$y(t) = \sum_{k=1}^{\infty} g_0(k)u(t-k) + v(t)$$

where u(t) is a stochastic process which is independent of v(t). Multiplying by  $u(t-\tau)$  and taking expectation yields

$$r_{yu}(\tau) = \sum_{k=1}^{\infty} g_0(k) r_u(\tau - k)$$

which is known as the Wiener-Hopf equation.

In practice, truncate the sum and solve the resulting system of eq.

$$\hat{r}_{yu}(\tau) = \sum_{k=1}^{M} \hat{g}(k)\hat{r}_{u}(\tau - k)$$

Lecture 3

System Identification 2005 EKL/TS

Page 9/ 38

Page 11/38



Estimates of the covariance functions.

• First choice:

$$\hat{r}_{yu}(\tau) = \frac{1}{N} \sum_{k=1}^{N-\tau} y(k+\tau) u(k) \quad (\tau \ge 0)$$

• Second choice:

$$\hat{r}_{yu}(\tau) = \frac{1}{N - \tau} \sum_{k=1}^{N - \tau} y(k + \tau) u(k) \quad (\tau \ge 0)$$

Which one to prefer?

Lecture 3

System Identification 2005 EKL/TS

Page 10/38

## Frequency Analysis

Estimate  $G_0(e^{i\omega})!$ 

$$\xrightarrow{\alpha\cos(\omega t)} G_0(z) \xrightarrow{\alpha|G_0(e^{i\omega})|\cos(\omega t + \varphi) + v(t)}$$

- Repeat experiment for different  $\omega$  (t = 1, ..., N).
- $\bullet\,$  Determine the phase shift and the amplitude of the output.
- Results in a Bode plot  $(|G_0(e^{i\omega})| \text{ and } \arg G_0(e^{i\omega})).$
- Sensitive to noise. Require long experiments.
- Gives basic information about the system.

# Spectral Analysis

• The correspondence of the Wiener-Hopf equation in the frequency domain is given by:

$$\Phi_{yu}(\omega) = G(e^{-i\omega})\Phi_u(\omega)$$

• An estimate of the transfer function can be obtained as:

$$\hat{G}(e^{-i\omega}) = \hat{\Phi}_{yu}(\omega)/\hat{\Phi}_{u}(\omega)$$

• Use estimates of the spectral densities, e.g.,

$$\hat{\Phi}_{yu}(\omega) = \frac{1}{2\pi N} \sum_{\tau = -N}^{N} \hat{r}_{yu}(\tau) e^{-i\tau\omega}$$

Lecture 3

System Identification 2005 EKL/TS

Page 13/ 38



Figure 1: Spectral analysis, N = 256: Left: Periodogram. Right: Bartlett window M = 128.

- Errors in  $\hat{r}_{yu}(\tau)$  are summed together  $\Rightarrow$  not consistent!
  - -N large  $\Rightarrow$  total (square) error is large even if the error in  $\hat{r}_{yu}(\tau)$  is small for all  $\tau$ .
  - $-\hat{r}_{yu}(\tau)$  decreases slowly  $\Rightarrow$  poor estimate of  $\hat{r}_{yu}(\tau)$  for large values of  $\tau$ .
- Better estimates are obtained if a lag window, w(t), is used:

$$\hat{\Phi}_{yu}(\omega) = \frac{1}{2\pi} \sum_{\tau=-N}^{N} \hat{r}_{yu}(\tau) w(\tau) e^{-i\tau\omega}$$

 $\bullet$  Length of lag window (M) - compromise between bias and variance (high resolution and reducing erratic fluctuations).

Lecture 3

System Identification 2005 EKL/TS

Page 14/38

## Summary - Nonparametric Methods

- Results often in graph or table (step response, weighting function, transfer function etc.).
- Transient analysis (step-response, impulse response).
- Frequency analysis (sinusoidal input).
- Correlation analysis (weighting function estimate).
- Spectral analysis (transfer function estimate).
- Useful for obtaining crude estimates of time constants, cut-off frequencies etc. or for model validation.

## Input Signals (Ch. 5)

The quality of the model is dependent on an appropriate choice of input signal.

Examples of useful input signals are:

- Step function.
- Pseudorandom binary sequence (PRBS).
- Autoregressive moving average process (ARMA).
- Sum of sinusoids.

Lecture 3

System Identification 2005 EKL/TS

Page 17/ 38

Page 19/ 38

#### Step Function

$$u(t) = \begin{cases} k, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

#### Properties

- Mostly used for transient analysis: overshoot, static gain, major time constants.
- Limited usability for parametric modeling.

Most often the input signal is characterized by its first and second order moments:

$$m = Eu(t)$$
  
 
$$r(\tau) = E(u(t+\tau) - m)(u(t) - m)^{T}$$

and/or its spectral density:

$$\Phi(\omega) = \frac{1}{2\pi} \sum_{\tau = -\infty}^{\infty} r(\tau) e^{-i\tau\omega}$$

Rem: Deterministic signals

$$Eu(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} u(t)$$

Lecture 3

System Identification 2005 EKL/TS

Page 18/38

# PseudoRandom Binary Sequence (PRBS)

A PRBS u(t) is a periodic, deterministic signal with white-noise-like properties.

$$u(t) = \text{rem}(A(q)u(t), 2) = \text{rem}(a_1u(t-1) + \dots + a_nu(t-n), 2)$$

### Properties

- The signal shifts between two levels in a certain fashion depending on A(q).
- Spectral characteristics is determined by A(q) and, in particular, by the period length  $M = 2^n 1$ .
- Deterministic sequence behaving as noise (reproducibility).



Figure 2: PRBS sequence,  $p{=}0.5, M = \infty.$  Left: Example of realization. Right: Spectral density.

Lecture 3

System Identification 2005 EKL/TS

Page 21/ 38

Page 23/ 38



Figure 3: ARMA(2,2) process. Left: Example of realization. Right: Spectral density.

ARMA Process

$$A(q^{-1})y(t) = C(q^{-1})e(t)$$

where e(t) is white noise with Ee(t) = 0 and  $Ee^2(t) = \lambda^2$ .

#### Properties

- The signal y(t) can be obtained by filtering white noise.
- The filters can be chosen to obtain almost any desired frequency characteristics.
- The spectral density of an ARMA process y(t) is given by:

$$\Phi_y(\omega) = rac{\lambda^2}{2\pi} \left| rac{C(e^{i\omega})}{A(e^{i\omega})} \right|^2$$

Lecture 3

System Identification 2005 EKL/TS

Page 22/ 38

## Sum of Sinusoids

$$u(t) = \sum_{m=1}^{M} a_m \sin(\omega_m t + \varphi_m)$$

## Properties

- User parameters:  $a_m$ ,  $\omega_m$  and  $\varphi_m$ .
- Covariance function given by:

$$r(\tau) = \sum_{m=1}^{M} \frac{a_m^2}{2} \cos(\omega_m t + \varphi_m)$$

• Spectral density given by:

$$\Phi(\omega) = \sum_{m=1}^{M} \frac{a_m^2}{4} [\delta(\omega - \omega_m) + \delta(\omega + \omega_m)]$$



Figure 4: Sum of 4 sinusoids. Left: Signal. Right: Spectral density.

Lecture 3

System Identification 2005 EKL/TS

Page 25/ 38

(ii) The matrix:

$$\mathbf{R}_{u}(n) = \begin{pmatrix} r_{u}(0) & r_{u}(1) & \cdots & r_{u}(n-1) \\ r_{u}(-1) & r_{u}(0) & & \vdots \\ \vdots & & \ddots & \\ r_{u}(1-n) & \cdots & & r_{u}(0) \end{pmatrix}$$

is positive definite.

- Another definition:  $\det \mathbf{R}_n(n) \neq 0$ .
- And another: u(t) is p.e. of order n if  $\Phi_n(\omega) \neq 0$  on at least n points in the interval  $-\pi < \omega \leq \pi$ .

# Persistent Excitation

To obtain estimates of a parametric model the input signal has to be "rich" enough to excite all modes of the system.

A input signal is said to be persistently exciting (p.e.) of order n if:

(i) The following limit exists:

$$r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} u(t+\tau) u^T(t)$$

**Rem:** u(t) ergodic implies

$$r_u(\tau) = E u(t+\tau)u^T(t)$$

Lecture 3

System Identification 2005 EKL/TS

Page 26/38

An input signal that is p.e. of order 2n can be used to consistently estimate a parametric model of order  $\leq n$ .

- A step function is p.e. of order 1.
- A PRBS with period M is p.e. of order M.
- An ARMA process is p.e. of any finite order.
- A sum of m sinusoids is p.e. of order 2m (if  $\omega_m \neq 0$  and  $\omega_m \neq \pi$ ).

Another important observation!

A parametric model becomes more accurate in the frequency region where the input signal has the major part of its energy.

A physical process is often of low frequency character  $\Rightarrow$  use low-pass filtered signal as input.

Lecture 3

System Identification 2005 EKL/TS

Page 29/ 38

Page 31/ 38

## Model Parameterizations (Ch.6)

Mathematical models can be derived from:

- Physical modeling
- Identification

Classification of mathematical models

- SISO MIMO
- Linear models Nonlinear models
- Parametric models Nonparametric models
- Time-invariant models Time-varying models
- Time domain models Frequency domain models
- Discrete-time models Continuous-time models
- Deterministic models Stochastic models

#### Summary - Input Signals

- The choice of input signal determines the quality of the final parametric model.
- The obtained parametric model is more accurate in frequency regions where the input signal contains much energy.
- An input signal has to be rich enough to excite all interesting modes of the system (persistently exciting of sufficiently high order).
- In practice there might be some restrictions on the input.

Lecture 3

System Identification 2005 EKL/TS

Page 30/38

General model structure (SISO)

$$y(t) = G(q^{-1}, \boldsymbol{\theta}) u(t) + H(q^{-1}, \boldsymbol{\theta}) e(t)$$

$$G(q^{-1}, \boldsymbol{\theta}) = \frac{B(q^{-1})}{A(q^{-1})} = \frac{b_1 q^{-n_k} + b_2 q^{-n_k - 1} + \dots + b_{n_b} q^{-n_k - n_b + 1}}{1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}}$$

$$H(q^{-1}, \boldsymbol{\theta}) = \frac{C(q^{-1})}{D(q^{-1})} = \frac{1 + c_1 q^{-1} + \dots + c_{n_c} q^{-n_c}}{1 + d_1 q^{-1} + \dots + d_{n_d} q^{-n_d}}$$

where e(t) is white noise with variance  $\lambda^2$ , and

**Rem:** Often  $\lambda^2 = \lambda^2(\boldsymbol{\theta})$ .

### **Assumptions:**

- Time-delay  $n_k > 1 \Rightarrow G(0, \theta) = 0$  (also  $H(0, \theta) = 1$ )
- $H^{-1}(q^{-1}, \theta)$  and  $H^{-1}(q^{-1}, \theta)G(q^{-1}, \theta)$  are asymptotically stable. Often  $H(q^{-1}, \theta)$  also needs to be asym. stable.

Lecture 3

System Identification 2005 EKL/TS

Page 33/ 38

Time series models (no input signal)

ARMA

$$A(q^{-1})y(t) = C(q^{-1})e(t)$$

AR

$$A(q^{-1})y(t) = e(t)$$

MA

$$y(t) = C(q^{-1})e(t)$$

**Applications:** Times-series modeling is useful in various disciplines, such as, economy, astrophysics, speech, etc.

Commonly used simplified models:

ARMAX

$$A(q^{-1})y(t) = B(q^{-1})u(t) + C(q^{-1})e(t)$$

**Rem:**  $A(q^{-1})$  describes the dynamics: Here the input and the noise is governed by the same dynamics.

ARX

$$A(q^{-1})y(t) = B(q^{-1})u(t) + e(t)$$

FIR

$$y(t) = B(q^{-1})u(t) + e(t)$$

OΕ

$$y(t) = \frac{B(q^{-1})}{A(q^{-1})}u(t) + e(t)$$

Lecture 3

System Identification 2005 EKL/TS

Page 34/ 38

## Uniqueness and Identifiability

## Uniqueness:

Let the true system S be described by  $G_0$ ,  $H_0$  and  $\lambda_0^2$ .

Introduce the set

$$D_T = \{ \boldsymbol{\theta} | G_0 = G(q^{-1}, \boldsymbol{\theta}), H_0 = H(q^{-1}, \boldsymbol{\theta}), \lambda_0^2 = \lambda^2(\boldsymbol{\theta}) \}$$

- $D_T$  empty  $\Rightarrow$  underparameterized model structure.
- D<sub>T</sub> contains several points ⇒ overparameterized model structure. Numerical problems are likely to occur.
- $D_T$  contains one point  $\Rightarrow$  Ideal case! The system is **uniquely** described by the model structure  $(\theta = \theta_0)$ .

#### Identifiability:

Lecture 3

- System Identifiable (SI):  $D_T$  is nonempty, and  $\hat{\boldsymbol{\theta}} \to D_T$  as  $N \to \infty$ .
- Parameter Identifiable (PI): If the system is SI and  $D_T$  contains one point  $(\hat{\theta} \to \theta_0)$ .

In other words, if the choice of model, input signal and identification method makes the estimated parameter vector,  $\hat{\boldsymbol{\theta}}$ , converge (with probability one, as  $N \to \infty$ ) ) to a parameter vector that perfectly describes the system as the number of data points tend to infinity then the system is said to be **system identifiable**. If the system is uniquely described by the model and system identifiable then the system is said to be **parameter identifiable**.

System Identification 2005 EKL/TS

Page 37/ 38

Lecture 3

## Summary - Model Parameterizations

- It is essential that the model structure suits the actual system.
- Many standard model structures are available with different approaches of how to model the influence of the input and the disturbances.
- Finding the correct, or best, model structure and model order is normally an iterative procedure (Ch. 11).
- A model should ideally be unique and the complete experimental set-up should be such that the system is parameter identifiable.
- Not included: Ex 6.3, 6.4, 6.6, continuous-time models. "Kursivt": Ex 6.5.

System Identification 2005 EKL/TS

Page 38/ 38