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Instrumental Variable Methods (IVM) (Ch. 8)
Main Idea: Modify the LS method to be consistent
also for correlated disturbances.
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The least squares estimate
1 B
=D ee™®)| | ety
N N
t=1 t=1
has the estimation error (when N — 00)
R -1
0—00=E[pt)p" (t)]  Elp(t)e(t)]
Consequently, for @ — 8y = 0 to hold, we must have
Elp(t)e(t)] =0,
which is satisfied if, and essentially only if, £(¢) is white noise. Hence,
the least squares estimate is not consistent for correlated noise
sources!
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Least Squares Method

Consider the ARX model,

Algy(t) = Blgult) + (1)
or, equivalently,
y(t) = ¢" (1)0 +<(t)
where £(t) is the equation error (y(t) — ym(t)), and
o) =[—yt—=1) ... —y(t —n)ult —1) ... u(t —ny)]T

0=lar...an, by ... bn)"
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Cure:

e PEM (last lecture). Model the noise.
— Applicable to general model structures.
— Generally very good properties of the estimates.

— Computationally quite demanding.

e Instrumental variable methods (IVM). Do not model the noise.
— Retain the simple LS structure.

Simple and computationally efficient approach.

Consistent for correlated noise.

Less robust and statistically less effective than PEM.
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The IV method

Introduce a vector z(t) € R™ with entries uncorrelated with e(#).

Then (for large values of N)

N
t

which yields (if the inverse exists)

o= | L7 et
B Nt:lz (p

N
H z<t>y<t>}

t=1

The elements of z(t) are usually called the instruments. Note that
if z(t) = (), the IV estimate reduces to the LS estimate.
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In practice these demands are fulfilled by choosing the instruments to
consist of delayed and/or filtered inputs. The instruments are

commonly chosen such that
T
2(t) = [ =1 ... —nt—ng) ult—1) ... u(t—ny)
where the signal 7(t) is obtained by filtering the input as

Clq~Mn(t) = D(g~ Mu(t).

In the special case when C(¢~!) =1 and D(q¢7!) = —¢ ™,

T
u(t —ng — nyp)

z(t) = [ u(t—1)

Rem: Notice that «(t) and the noise £(t) are assumed to be
independent.
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Choice of Instruments
Obviously, the choice of instruments is very important. They have to
be chosen
(1) such that z(t) is uncorrelated with e(t) (Ez(t)e(t) = 0), and
(ii) such that the matrix
1
v FOeT®) = Bxt)e’(?)
t=1
has full rank. In other words it is essential that z(t) and ¢(t) are
correlated.
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Extended IV methods '
Recall that the basic IV estimate is derived from
N 2
min z(t)e(t)
& =
More flexibility is obtained if the instrument vector z(t) is augmented
to dimension n, (n, > ng), and if we allow for a weighting and a
prefiltering of the residuals by some stable filter F(¢~1), i.e.,
N 2
min z2(t)F (g Me(t)
o t=1 Q
where |[z||3, = 27 Qz and Q is a positive definite weighting matrix.
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Inserting
e(t) = y(t) — " ()0
yields the so-called extended IV method
2
6= i
arg min

t=1 =1

[ 2()F(q )" (1)

6 — [ z(1)F (g )y(t)

Q

When F(g~!) =1 and Q =1, the basic IV method is obtained.
Introduce

1
RN - Nt

rN =
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Theoretical Analysis

Assumptions
(i) The system is strictly causal and asymptotically stable.
(ii) The input is persistently exciting of a sufficiently high order.

(iii) The disturbance is a stationary stochastic process with rational
spectral density,
e(t) = H(g Ve(t),  Ee*(t) =\
(iv) The input and the disturbance are independent.

(v) The model and the true system have the same transfer function if

and only if 8 = 0y (uniqueness).

(vi) The instruments and the disturbances are uncorrelated.

J
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Then
. ) 9
6 = arg min [Rn6 —rnllg
= argmin (Ry6 — ry)” Q(Ry6 —1y)
- [RLQRy| 'REQry
Note that due to numerical instability the algorithm should not be
implemented in this manner.
Rem: Notice that Ry is in general not a square matrix.
. J
Lecture 5 System Identification 2005 EKL/TS Page 10/ 18
( )
Consider the system
y(t) = @7 ()60 + £(t)
Then
N
o= o 2OF@
t=1
1 N 1 N
= & FOF@ 00+ 2OFG )
t=1 t=1
Ry an
= Rpn6o+an
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Thus
0 -6, = [RLQRy] 'RLQay — [R"QR]'R7Qq

where

[I>

R Jim Ry = E [2()F(g™)¢" (1)]

qa £ lim qv=FE[z(t)F(q ")e(t)]

N—oco
Therefore, the TV estimate will be consistent (limy_, 0= 6y) if

(i) R has full rank (inaccurate estimates will be obtained if R is
nearly rank deficient).

(i) E[z(t)F(q ")e(t)] = 0.
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Optimal IVM

The main usefulness in being able to express Py lies in the
comparison to Ppgys (recall that PEM is efficient for Gaussian
disturbances). An “appropriate” choice of parameters leads to the
optimal IVM. For example, (single output)

z(t) = H '(a He()
Fg') = H'Ya )
Q =1
where @(t) is the noise-free part of ¢(t). Then,
PR = N {B [H(g et H)e" (0]}

and Py > P?Z\); > Ppruy.

J
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Furthermore, the parameter estimation errors are asymptotically
Gaussian distributed with zero mean and variance Py

VN(Oy — 60) — N(0,Ppy)
where
Py = A (R'QR) 'R'QSQR (R'QR) '
where
_ _ - _ T
S=E[F(¢ )H(qa =] [FlaHH(¢ ")=(t)]
Rem: For multivariable systems S must be modified.
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Approximative implementation of the optimal IVM
Note that the optimal instruments can not be implemented as it
requires knowledge of the undisturbed output, the noise variance
(A\%), and the shaping filter H(q'). Fortunately, it is possible to find
an approximate (iterative) implementations.
One way is the following four-step IV estimator:
(i) Use the least-squares estimate of
(1
yH) ="M = by
. J
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(i) Use the IV estimator with the instruments
2() = [—aM(t - 1) e na) w(t 1) ult )]
m _ BY ™Y 5(2)
where ;" = %ut = 0Oy
(iii) Estimate H (g !). Postulate an AR model, and use the
least-squares method
Lg a0 =e(t), = Ln)
where 07 (t) = A (¢ )y(t) — BY (¢ )ult)
(iv) Use the IV estimator with F(¢~') = L(¢"), and
z(z)t:ﬁ;\; -1 —z(Q)t—l ...—x(z)t—naut—l coou(t —ng
(t) (¢ I (t—-1) ( Ju(t—1) ( )]
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Summary IVM

The implementation of the PEM is computationally complex for

many model structures.

The computationally convenient .S method is normally biased
for such model structures (i.e. for correlated disturbances).

The IV method uses instruments that are uncorrelated with

the disturbances to make the “LS-like” solution consistent.

The parameters obtained by the IV method are thus consistent
(if the instruments are chosen with care) but has a (slightly)
higher variance than the PEM estimates.

Approximately optimal IV methods can be implemented in an
iterative manner to achieve the lowest possible variance of the TV

estimates.
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