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Model Structure Determination and Model Validation —
(Ch. 11)

“A model is of no use if its validity is not verified.”
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Objective: Obtain a good model at a low cost!
e Quality of model: A scalar measure of the goodness, e.g., the
mean-square error (MSE).
— MSE consists of a bias contribution and a variance
contribution.
— Reduce bias = more flexible model structures. Decrease
variance = decrease the number of estimated parameters.
— Trade-off between: Flexibility and parsimony (too complex).
e Price of model:
— Algorithm complexity.
— Computational time and power.
e Intended use of the model!
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Choice of Model Structure '

1. Type of model set.
e Ex: Linear or nonlinear model, black-box or white-box model.
e In our case: ARX, ARMAX, OE, ...

2. Size of the model set. Orders of the polynomials (A(g1),
B(q™1), C(q™1), etc). No true orders in the reality!

3. Model parametrization
e Transformations of data.

e Choice of operators: E.g. g +— 6 = %.
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Model Validation .

Reasons that it is important to validate the model structure are that
e An underparameterized model is inaccurate/not flexible enough.

e An overparameterized model is not parsimonous and leads to
unnecessary complicated computations.

Basic approaches:
e Plots of signals.

e Common sense (a priori information, will the model serve its

purpose?)

e Statistical tests.
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Basic Plots and Common Sense

Compare the measured output with the model output:
ym,(t) = G(q7] ) HN)u(t)

the difference is due to modeling errors and disturbances.

Plot the difference e(t) = y(t) — ym(¢).

e Compare a step response to the modeled step response.

Compare the estimated transfer function to the transfer function

of the model (frequency domain).
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What to compare?

Def: The k-step ahead model predictions g (¢; é) are based on the
past data

using the model associated with 6.
Rem: Common choices are:
e i (t; é) is the standard mean square optimal predictor

91(t:0) = (tlt—1,0) = H (¢ )G(q Yut)+(1-H (a "))y(t)

e (o (t;0) is based only on past inputs (referred to as simulation)

.Tj/oo(tv 0) = ?}s(tv 0) = G(qil)u(t)
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Figure 1: Left: Model output comparison. Right: Transfer function

comparison.
\_ J
Lecture 6 System Identification 2005 EKL/TS Page 6/ 34
( A

To compare different models we often use a scalar measure of the
differences y(t) — 5 (t|0n)

V@) = = S lu(0) — is(16x)

Example: What are the properties of

9(t) =yt —1)
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Questions to Answer

In the following we will concern ourselves with the following
questions:

e Is the model flexible enough? TIs the model structure large
enough to cover the true system?

e Is a given model too complex?
e Which model structure of two candidates should be chosen?

Each of these questions have several different answers; no solution is

perfect.
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1 N—1
R.(7) = N B e(t+ 7)e(t)

is not small for 7 # 0, then part of (¢) could have been predicted
from past data. This means that y(¢) could have been better
predicted.

e The covariance between residuals and past inputs
R (r)=~  e(tult—r)
should be small if the model has picked up the essential part of

the dynamics from u to y (assuming open loop operation). This

also indicates that the residual test is invariant to various inputs.
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Is a model flexible enough?

The “leftovers” from the modeling process the part of the data that
the model could not reproduce — are the residuals

e(t) = e(t,0x) = y(t) — §(tlt — 1,8x)

Rem: The residuals are the prediction errors evaluated at éN. If

6N = 6 then £(t) is white!
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Testing Whiteness

If the model is accurately describing the observed data, then the
residuals () should be white. A way to validate the model is thus
to, in some way, test the hypotheses

Hy : g(t) is a white sequence

Hy, : €(t)is not a white sequence

This can be done in several ways, for example:
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Autocorrelation Test

The autocovariance of the residuals is estimated as:
N—1
Fe(T) = — e(t+ 7)e(t)
t=1
If Hy holds, then the squared covariance estimates is asymptotically
x?2 distributed:
N " 2
oy Fe(i) = x7(m)
20,
Furthermore, the normalized autocovariance estimates are

asymptotically Gaussian distributed

\/N;Egi — N(0,1)
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Figure 2: Autocorrelation test. Left: White residuals. Right: Corre-

lated residuals.
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A typical way of using the first test statistics for validation is as
follows (the second can be used similarly).

Let = denote a random variable which is y2-distributed with m
degrees of freedom. Furthermore, define x2(m) by

a = P(a > x2(m))

for some given a (typically between 0.01 and 0.1). Then if,

N m
22, 2 .
P 72(i) > x5 (m) reject Hy
7o), WX
N m
22 72(i) < x2(m) accept Hy
=0
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Zero Crossing Test

Given a white sequence, one can expect that the residuals should
change sign on the average every second time step. Introduce Zy as
the number of times the residual changed up to time N. It can be

shown that

Zny — N(m,P)
where m &~ N/2 and P = N/4. Thus
28y — N
2N 5 N(0,1)

VN
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Cross Correlation Test
If the model is an accurate description of the system, then the input
and the residuals should be uncorrelated (no unmodeled dynamics),
i.e.,
reu(T) = Ee(t + T)u(t) = 0

e If 7., (1) # 0 for 7 < 0 then there is output feedback in the input.

e Indication of wrong time delay in model. If a time delay of two
samples has been assumed in the model, but the true delay is one
sample, then a clear correlation between u(t — 1) and e(¢) will
show up.

e To visualize the correlation, it might be better to postulate a
model like £(t) = G<(q)u(t).
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Introduce
LN u(t—1)
R, =~ lut - 1) u(t —m)]
t=m+1
" u(t —m)
T
P [rG ) (e m)]
where 7 is some given integer (such that r is non-zero). Then,
T 517t 2
Nr [fs(O)Ru] r — x%(m)
which can be used to design a hypothesis test.
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The following results can be used to design a hypothesis test whether
the input and the residuals are uncorrelated.

Form the normalized test quantity

where 7, (7) is the estimated crosscovariance

1 N —max(7,0)
Feu(T) = i e(t+ 1)u(t)
t=1—min(0,7)
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Is a model too complex? I

It is important to detect if a model is overparameterized as such a
model is unnecessarily complicated and can be sensitive to parameter
variations. One way to do so is to study a pole-zero plot of the model
transfer function.

If there are signs of pole-zero cancellation for model orders higher
than a certain threshold n, it suggests that p < n is a suitable model

order for the system.
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Figure 3: Pole-Zero cancellation. Left: ARX(3,2). Right: ARX(5,4)
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The parsimony principle
The parsimony principle states that one should not use extra
parameters to model a system if they are not necessary.
Assume that the quality of the model is measured by Wy:
WN(GN) = EEQ(LL7 9]\/)
where (¢, 0) is the prediction error. If the estimate is exact éN =0y,
the prediction error would be white, and W]\/(éA) = A\2. However,
éN deviates somewhat from 6.
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Cross validation

e Check the criterion V;(8y) (or Vi(Ox)). A model structure that
is “too rich” to describe the system will also partly model the
disturbances that are present in the actual data set. This is

called an “overfit” of the data.

e Using a fresh dataset that was not included in the identification

experiment for model validation is called “cross validation”.

e Cross validation is a nice and simple way to compare models and

to detect “overfitted” models.

e Cross validation requires a “large amount” of data, the validation

data cannot be used in the identification.
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Results: It holds that

) ) 2
EWn(0x) ~ Vi(0x) + A%Np

Fy p
Vi(On) ~ A3 (1 — N)
where A2 is the variance of the disturbance and p = dim .
Rem:

° EWN(éN) represents the average as the estimated models are

evaluated on validation data.

o V] (éN) will decrease with increasing number of parameters.
However, each parameter carries a variance penalty that will
contribute with 2)2/N.

J

Lecture 6 System Identification 2005 EKL/TS

Page 24/ 34



Comparison of Model Structures

Use the PEM loss function V;(0) as a measure of the model quality.
For models of increasing order, the value of the loss function will
decrease monotonically, and the problem is to find the lowest model

order that gives a significant decrease of the loss function.

Let V;'(0) and V;2(0) be the minimum of the loss function of V;(8)
for two models orders p; and py. Then

JAN
=N
x e

= x*(p2 — p1)
Thus, we choose model order p; at a significance level « if

z < xa(p2 — p1)

otherwise ps is selected.
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(iii) The minimum description length (MDL)

plnN]

MDL(p) = Vi (8x) [1 + 55

The AIC and FPE are asymptotically equivalent, but it can be shown
that both will tend to choose too high model orders (the estimates

are not consistent). The MDL yields estimates that are consistent.

Physical insight might significantly simplify the model order selection.
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Another approach is to formulate a criterion that is a function of the
loss function V3 (@), but also penalizes the model order

Wy = Vi(6n)[1 + B(N,p)]
where B(N, p) is a function which should increase with the model
order p (to penalize too complex model structures), but decrease to
zero when N — oc.
Important examples of penalty functions are:
(i) The Akaike information criterion (AIC)
P 2
AIC(p) = Vi(Bw) [1 + ]
N
(ii) The final prediction error criterion (FPE)
p 1+p/N
FPE(p) = Vi(0w) [
(p) 1(6n) 1-p/N
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Figure 4: Model structure determination
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Summary - Model Parameterizations

Many different tests can be performed to verify the validity of a
model (try simple things first).

The choice of the appropriate model structure (model order) can
be based on statistical tests on the residuals (autocovariance

test/ cross-covariance test).

To decide the appropriate model order tests such as the AIC,
FPE or MDL criteria can be used.

Cross validation is a good approach that should be used if there
is a sufficient amount of data available.

Most tests are implemented in the system identification toolbox
for MATLAB.

J

Lecture 6

System Identification 2005 EKL /TS

Page 29/ 34

.

Figure 5: Correlation tests.
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Figure 6: Comparing outputs. Estimation data.
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Figure 7: Comparing outputs. Validation data.
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loss function
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Figure 8: Loss functions.
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Poles and zeros LSM n =2

Poles and zeros LSM n =3

.

Figure 9: Poles-zeros plots.
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