
Le
ture 6

Model Stru
ture Determination and Model Validation �(Ch. 11)�A model is of no use if its validity is not veri�ed.�
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Choi
e of Model Stru
ture1. Type of model set.� Ex: Linear or nonlinear model, bla
k-box or white-box model.� In our 
ase: ARX, ARMAX, OE, ...2. Size of the model set. Orders of the polynomials (A(q�1),B(q�1), C(q�1), et
). No true orders in the reality!3. Model parametrization� Transformations of data.� Choi
e of operators: E.g. q  ! Æ = q�1h .
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Obje
tive: Obtain a good model at a low 
ost!� Quality of model: A s
alar measure of the goodness, e.g., themean-square error (MSE).� MSE 
onsists of a bias 
ontribution and a varian
e
ontribution.� Redu
e bias ) more �exible model stru
tures. De
reasevarian
e ) de
rease the number of estimated parameters.� Trade-o� between: Flexibility and parsimony (too 
omplex).� Pri
e of model:� Algorithm 
omplexity.� Computational time and power.� Intended use of the model!
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Model ValidationReasons that it is important to validate the model stru
ture are that� An underparameterized model is ina

urate/not �exible enough.� An overparameterized model is not parsimonous and leads tounne
essary 
ompli
ated 
omputations.Basi
 approa
hes:� Plots of signals.� Common sense (a priori information, will the model serve itspurpose?)� Statisti
al tests.
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Basi
 Plots and Common Sense� Compare the measured output with the model output:ym(t) = G(q�1; ^�N)u(t)the di�eren
e is due to modeling errors and disturban
es.� Plot the di�eren
e "(t) = y(t)� ym(t).� Compare a step response to the modeled step response.� Compare the estimated transfer fun
tion to the transfer fun
tionof the model (frequen
y domain).
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Figure 1: Left: Model output 
omparison. Right: Transfer fun
tion
omparison.
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What to 
ompare?

Def: The k-step ahead model predi
tions ^yk(t; ^�) are based on thepast data u(t� 1); : : : ; u(1); y(t� k); : : : ; y(1)using the model asso
iated with ^�.Rem: Common 
hoi
es are:� ^y1(t; ^�) is the standard mean square optimal predi
tor^y1(t; ^�) = ^y(tjt�1; ^�) = ^H�1(q�1) ^G(q�1)u(t)+�1� ^H�1(q�1)�y(t)� ^y1(t; ^�) is based only on past inputs (referred to as simulation)^y1(t; ^�) = ^ys(t; ^�) = ^G(q�1)u(t)
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To 
ompare di�erent models we often use a s
alar measure of thedi�eren
es y(t)� ^yk(tj^�N )
Vk(^�N ) = 1N NXt=1 jy(t)� ^yk(tj^�N )j2Example: What are the properties of^y(t) = y(t� 1)
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Questions to Answer

In the following we will 
on
ern ourselves with the followingquestions:� Is the model �exible enough? Is the model stru
ture largeenough to 
over the true system?� Is a given model too 
omplex?� Whi
h model stru
ture of two 
andidates should be 
hosen?Ea
h of these questions have several di�erent answers; no solution isperfe
t.
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Is a model �exible enough?

The �leftovers� from the modeling pro
ess � the part of the data thatthe model 
ould not reprodu
e � are the residuals"(t) = "(t; ^�N ) = y(t)� ^y(tjt� 1; ^�N )Rem: The residuals are the predi
tion errors evaluated at ^�N . If^�N = �0 then "(t) is white!
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� If ^R"(�) = 1N N��Xt=1 "(t+ �)"(t)is not small for � 6= 0, then part of "(t) 
ould have been predi
tedfrom past data. This means that y(t) 
ould have been betterpredi
ted.� The 
ovarian
e between residuals and past inputs^R"u(�) = 1N NXt=� "(t)u(t� �)should be small if the model has pi
ked up the essential part ofthe dynami
s from u to y (assuming open loop operation). Thisalso indi
ates that the residual test is invariant to various inputs.
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Testing Whiteness

If the model is a

urately des
ribing the observed data, then theresiduals "(t) should be white. A way to validate the model is thusto, in some way, test the hypothesesH0 : "(t) is a white sequen
eH1 : "(t) is not a white sequen
eThis 
an be done in several ways, for example:
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Auto
orrelation TestThe auto
ovarian
e of the residuals is estimated as:^r"(�) = 1N N��Xt=1 "(t+ �)�(t)If H0 holds, then the squared 
ovarian
e estimates is asymptoti
ally�2 distributed: N^r2"(0) mXi=1 ^r2"(i)! �2(m)Furthermore, the normalized auto
ovarian
e estimates areasymptoti
ally Gaussian distributedpN ^r"(�)^r"(0) ! N(0; 1)
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A typi
al way of using the �rst test statisti
s for validation is asfollows (the se
ond 
an be used similarly).Let x denote a random variable whi
h is �2-distributed with mdegrees of freedom. Furthermore, de�ne �2�(m) by� = P (x > �2�(m))for some given � (typi
ally between 0:01 and 0:1). Then if,N^r2"(0) mXi=1 ^r2"(i) > �2�(m) reje
t H0N^r2"(0) mXi=1 ^r2"(i) � �2�(m) a

ept H0

Le
ture 6 System Identi�
ation 2005 EKL/TS Page 14/ 34

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

τ

r ε(τ
)

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

τ

r ε(τ
)

Figure 2: Auto
orrelation test. Left: White residuals. Right: Corre-lated residuals.
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Zero Crossing Test

Given a white sequen
e, one 
an expe
t that the residuals should
hange sign on the average every se
ond time step. Introdu
e ^xN asthe number of times the residual 
hanged up to time N . It 
an beshown that ^xN ! N(m;P )where m � N=2 and P � N=4. Thus2^xN �NpN ! N(0; 1)
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Cross Correlation TestIf the model is an a

urate des
ription of the system, then the inputand the residuals should be un
orrelated (no unmodeled dynami
s),i.e., r"u(�) = E"(t+ �)u(t) = 0� If r"u(�) 6= 0 for � < 0 then there is output feedba
k in the input.� Indi
ation of wrong time delay in model. If a time delay of twosamples has been assumed in the model, but the true delay is onesample, then a 
lear 
orrelation between u(t� 1) and "(t) willshow up.� To visualize the 
orrelation, it might be better to postulate amodel like "(t) = G"(q)u(t).Le
ture 6 System Identi�
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The following results 
an be used to design a hypothesis test whetherthe input and the residuals are un
orrelated.Form the normalized test quantityx� = ^r2"u(�)^r"(0)^ru(0)where ^r"u(�) is the estimated 
ross
ovarian
e

^r"u(�) = 1N N�max(�;0)Xt=1�min(0;�) "(t+ �)u(t)
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Introdu
e
^Ru = 1N NXt=m+1

26664 u(t� 1)...u(t�m)
37775hu(t� 1) : : : u(t�m)i

r = h^r"u(�� + 1) : : : ^r"u(�� +m)iTwhere �� is some given integer (su
h that r is non-zero). Then,NrT h^r"(0) ^Rui�1r ! �2(m)whi
h 
an be used to design a hypothesis test.
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Is a model too 
omplex?

It is important to dete
t if a model is overparameterized as su
h amodel is unne
essarily 
ompli
ated and 
an be sensitive to parametervariations. One way to do so is to study a pole-zero plot of the modeltransfer fun
tion.If there are signs of pole-zero 
an
ellation for model orders higherthan a 
ertain threshold n, it suggests that p � n is a suitable modelorder for the system.
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Figure 3: Pole-Zero 
an
ellation. Left: ARX(3,2). Right: ARX(5,4)
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Cross validation� Che
k the 
riterion V1(^�N ) (or Vk(^�N )). A model stru
ture thatis �too ri
h� to des
ribe the system will also partly model thedisturban
es that are present in the a
tual data set. This is
alled an �over�t� of the data.� Using a fresh dataset that was not in
luded in the identi�
ationexperiment for model validation is 
alled �
ross validation�.� Cross validation is a ni
e and simple way to 
ompare models andto dete
t �over�tted� models.� Cross validation requires a �large amount� of data, the validationdata 
annot be used in the identi�
ation.
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The parsimony prin
iple

The parsimony prin
iple states that one should not use extraparameters to model a system if they are not ne
essary.Assume that the quality of the model is measured by WN :WN (^�N ) = E"2(t; ^�N )where "(t; �) is the predi
tion error. If the estimate is exa
t ^�N = �0,the predi
tion error would be white, and WN (^�N ) = �20. However,^�N deviates somewhat from �0.
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Results: It holds thatEWN (^�N ) � V1(^�N ) + �20 2pNV1(^�N ) � �20�1� pN �

where �20 is the varian
e of the disturban
e and p = dim�.Rem:� EWN (^�N ) represents the average as the estimated models areevaluated on validation data.� V1(^�N ) will de
rease with in
reasing number of parameters.However, ea
h parameter 
arries a varian
e penalty that will
ontribute with 2�20=N .
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Comparison of Model Stru
turesUse the PEM loss fun
tion V1(�) as a measure of the model quality.For models of in
reasing order, the value of the loss fun
tion willde
rease monotoni
ally, and the problem is to �nd the lowest modelorder that gives a signi�
ant de
rease of the loss fun
tion.Let V 11 (�) and V 21 (�) be the minimum of the loss fun
tion of V1(�)for two models orders p1 and p2. Thenx , N V 11 � V 21V 21 ! �2(p2 � p1)Thus, we 
hoose model order p1 at a signi�
an
e level � ifx � �2�(p2 � p1)otherwise p2 is sele
ted.Le
ture 6 System Identi�
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Another approa
h is to formulate a 
riterion that is a fun
tion of theloss fun
tion V1(�), but also penalizes the model orderWN = V1(^�N )�1 + �(N; p)�where �(N; p) is a fun
tion whi
h should in
rease with the modelorder p (to penalize too 
omplex model stru
tures), but de
rease tozero when N !1.Important examples of penalty fun
tions are:(i) The Akaike information 
riterion (AIC)AIC(p) = V1(^�N )h1 + 2pN i

(ii) The �nal predi
tion error 
riterion (FPE)FPE(p) = V1(^�N )h1 + p=N1� p=N i
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(iii) The minimum des
ription length (MDL)MDL(p) = V1(^�N )h1 + p lnNN i

The AIC and FPE are asymptoti
ally equivalent, but it 
an be shownthat both will tend to 
hoose too high model orders (the estimatesare not 
onsistent). The MDL yields estimates that are 
onsistent.Physi
al insight might signi�
antly simplify the model order sele
tion.
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Summary - Model Parameterizations

� Many di�erent tests 
an be performed to verify the validity of amodel (try simple things �rst).� The 
hoi
e of the appropriate model stru
ture (model order) 
anbe based on statisti
al tests on the residuals (auto
ovarian
etest/ 
ross-
ovarian
e test).� To de
ide the appropriate model order tests su
h as the AIC,FPE or MDL 
riteria 
an be used.� Cross validation is a good approa
h that should be used if thereis a su�
ient amount of data available.� Most tests are implemented in the system identi�
ation toolboxfor MATLAB.Le
ture 6 System Identi�
ation 2005 EKL/TS Page 29/ 34

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
autocorrelation of residual e, n=1

lag

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6
crosscorrelation of e and u, n=1

lag

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1
autocorrelation of residual e, n=2

lag

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2
crosscorrelation of e and u, n=2

lagFigure 5: Correlation tests.

Le
ture 6 System Identi�
ation 2005 EKL/TS Page 30/ 34

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10
n = 1 Fit :3.8202

y
m

y  

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15
n = 2 Fit :1.1441

y
m

y  

Figure 6: Comparing outputs. Estimation data.
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Figure 7: Comparing outputs. Validation data.
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Figure 9: Poles-zeros plots.
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