Why is recursive identification of interest?
e Online Estimation.
e Adaptive Systems.
e Time-varying Parameters.

e Fault Detection.
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Desirable Properties

We desire our recursive algorithms to have the following properties:

e Fast convergence.

Consistent estimates (time-invariant case).

Good tracking (time-varying case).

Computationally simple (perform all calculations during one

sampling interval).
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How do we estimate time-varying parameters?
e Update the model regularly (once every sampling instant)
e Make use of previous calculations in an efficient manner.
e The basic procedure is to modify the corresponding off-line
method, e.g., the least squares method, the prediction error
method.
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No algorithm is perfect. The design is always based on trade-offs,
such as:
e Convergence versus tracking.
e Computational complexity versus accuracy.
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e The criterion function V;(0) changes every time step, hence the
estimate O(t) changes every time step.
e How can we find a recursive implementation of 0(t)?
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Recursive Least Squares Method (RLS)
t
o(t) = in V(6 0) =Y (k
() = arsmn i(0). Vi(6) = 0
where (k) = y(k) — 7 (k)0. The solution reads:
O(t) =R, 'r,
where
t t
R, =Y k)" (k), m=> @k)y(k)
k=1 k=1
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RLS

Algorithm:

At time ¢ = 0: Choose initial values of 8(0) and P(0)

At each sampling instant, update ¢(¢) and compute

O(t) = 6(t — 1) + K (t)e(t)
e(t) = y(t) — " (1)0(t — 1)
K(t) = P(t)e(t)
P(t—1)p(t)e” (t)P(t—1
Pt = [Pt —1) - P Vel 0P 1)
1+ (t)P(t = 1)e(t)
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How do we handle time-varying parameters?

e Postulate a time-varying model for the parameters. Typically let
the parameters vary according to a random walk and use the

Kalman filter as an estimator.

e Modify the cost function so that we gradually forget old data.
Hence, the model is fitted to the most recent data (the
parameters are adapted to describe the newest data).
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Weighted RLS

At time ¢ = 0: Choose initial values of 8(0) and P(0)

Algorithm:

At each sampling instant, update ¢(¢) and compute

PﬁfhwﬁwﬂﬂP@*U}
A(t) + T () P(t — 1)e(t)

.
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e Modified cost function:
t
O(t) = argmin V,(6), Vi(0) =  B(t,k)e* (k)
0 k=1
e Suppose that the weighting function (¢, k) satisfies
Bt k) = XA —1,k), 0<k<t
Btt) =1
A common choice is to let A(t) = A, where A is referred to as a
so-called forgetting factor. In this case we get:
Blt,k)=M"F 0<A<1
e )\ =1 corresponds to the standard RLS.
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Initial Conditions '
e (0) is the initial parameter estimate.
e View P(0) as an estimate of the covariance matrix of the initial
parameter estimate.
— P(0) (and P(t)) are covariance matrices, and must be
symmetric and positive definite.
— Choose P(0) = pI.
— p large = large initial response. Good if initial estimate 9(0)
is uncertain.
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Forgetting Factor

Let A(t) = A. The forgetting factor A will then determine the
tracking capability.

e We must have A = 1 to get convergence.
e )\ small = old data is forgotten fast, hence good tracking.

e ) small = the algorithm is sensitive to noise (bad convergence).

e The memory constant is defined as Ty = ﬁ

The choice of A is consequently a trade-off between tracking
capability and noise sensitivity. A typical choice is A € (0.95,0.99). It

is common to let A(¢) tend exponentially to 1, e.g.,

At) =1—= M1 —A(0)

.

The Kalman Filter '

Consider the system:
x(t+1) = Fz(t) + Gu(t) + v(1)
y(t) = Ha(t) + e(t)

where v(t) and e(t) are independent white noise sources with
Eeé2(t) = Ry and Ev(t)vT (1) = R;.
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The optimal predictor of the state variable x(t) is given by the

Kalman filter

ﬁﬁ+U:Fﬂﬂ+GMﬂ+KﬁﬂMﬂ—Hﬁ@
FP(t)H"
K(t) = #T
Ry + HP(t)H
where
FPt)H"HP(t)F”
P(t+1)=FP@t)F" — ®) ( )T + R,
Ry + HP(t)H
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Let us model the parameter variation according to
0(t) + v(t)

6(t +1)
t) =@ T (t)0(t) + e(t)

y(t)

Then
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4 )
The tracking capability is affected by the covariance matrix Ry (let
R, =1 for simplicity).

e View R; as a design variable.

e Let Ry be a diagonal matrix.

e Large elements of Ry = large parameter variations, and vice
versa.

e The Kalman filter gives better flexibility than the forgetting
factor implementation. One can easily assume different variations
in different parameters.

. J

Lecture 7 System Identification 2005 EKL /TS Page 17/ 36

( )
Some comments:

e The influence of the design variables P(0), 8(0) and A(t) is the
same as for the RLS.

e RIV = consistent estimates of A(¢~1) and B(¢"!) in a ARMAX
model (time-invariant parameters). Consistent estimates even for
colored noise.
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Recursive IVM (RIV)
As for the least squares method, it is straightforward to find a
recursive version of the IV method
. t ot
by =| =" | 20
k=1 k=1
as
0(t) = 6(t — 1) + K(t)e(t)
K(t) = P(t)z(t)
e(t) = y(t) — " (1Ot - 1)
1 P(t—1)z(t)pT t—1
i) = <L) - P D=0 0P
A(t) At) + T (1) P(t - 1)z(t)
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Recursive PEM (RPEM)
To derive a recursive PEM, we begin by defining the cost function
(SISO)
1t
Vi) =5 A (6.0)
s=1
Tt is not possible to derive an exact recursive algorithm (the off-line
method relies on a numerical minimization), and some form of
approximations must be used.
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Assume that 6(¢ — 1) minimizes V;_1(8) and that the minimum point
of V;(6) is close to B(t — 1). Then using a second-order Taylor
expansion of V;(8), one obtains

Vi(6) ~ Vi(B(t — 1)) + V/(B(t — 1)) (6 — 6(t — 1))
+ %(9 —0(t—1)"V, (Bt — 1)) (6 — (1 — 1))

Minimize this with respect to @ and let the minimum be 8(#):

"

b = b —1) [V, B 1)] V(B 1)

Rem: We must find V/(8(¢t — 1)) and P(t) = [V, (8(t — 1))] !

Algorithm:
O(t) = O(t — 1) + K(t)e(t)
K(t) = P(t)(t)

P) = Hp(t gy

P(t— 1)p(t)y" (1) P(t — 1)}
A+ ()P (t—1)(t)

where the actual way of implementing the approximations
e(t) ~e(t,0(t —1))
9 )
$(t) ~ — | 5ot 0t —1)]

depend on the model structure.

Example: ARMAX

.
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Comparison between RPEM and RPLR:
e The computational demand is similar for the methods.

e The RPEM converges under weak assumptions, while for the
RPLR convergence is not always assured (depends on Cy(g™1)).

e In some cases, it seems as the RPLR has a better/faster transient
behavior than the RPEM.
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Recursive Pseudolinear Regression (RPLR)
Consider the ARMAX model
Ag™My(t) = Blg Hu(t) + Clg He(t)
Rewrite the model as
y(t) = @7 (1)6 + e(t)
O (1) = [yt —1) eyt — ma)u(t—1) -+ u(t —np) et — 1) - et — )
O=la1 - an, b1 - bnyc1--- end]”

Here e(t — 1),...,e(t — n.) are unknown! Replacing these by the

prediction errors e(t — 1),...,e(t — n.) and applying RLS yields

RPLR. Notice () = y(t) — @7 (£)0(t — 1).
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Comparing the Methods

In the following, we will examine the following simulated system
(1—-0.9¢ Hy(t) = 1.0g "u(t) + (1 — 0.9¢ 1)e(t)

where u(t) and e(t) are independent white noise with zero mean and
unit variance. For RLS and RIV, we use the model structure

(ignoring the noise color)

y(t) +ay(t — 1) = bu(t — 1) + e(t)
0=1[abT

with RIV using the instruments z(t) = [u(t — 1) u(t — 2)]7.
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For RPEM and PLR, we take the noise into account and use the
model

y(t) +ay(t —1) =bu(t — 1) +e(t) + ce(t — 1)

T
0=1[ab
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Figure 2: RPEM (left) and RPLR (right)
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Figure 1: RLS (left) and RIV (right)
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Effect of Initial Value
Using the same system, we examine the effect of the initial values
using RLS, setting P(0) = pI. Larger p gives faster response.
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Figure 3: p =10 (left) and p = 0.01 (right)
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Effect of the forgetting factor

Using the ARMA system y(t) — 0.9y(t — 1) = e(¢) + 0.9¢(t — 1) and
the RPEM. Correction steps and rate of convergence increase when A
decreases. For A < 1, the estimates do not converge, but oscillates
around the true value.
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Figure 4: A =1 (left) and A = 0.95 (right)
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Excitation

Just as for the off-line case, it is important that the input is
persistently excitation off sufficiently high order. This applies during
the whole identification period.

Common Problems for Recursive Identification

e Excitation.
e Estimator windup.

e P(t) becomes indefinite.

\_ J
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Estimator Windup I

Often, some periods of an identification experiment exhibit poor
excitation. This causes problems for the identification algorithms.
Consider the extreme situation when ¢(¢) = 0 in the RLS algorithm.
Then

Notice:
e 0 is constant as ¢ increases.

e P increases exponentially with time for A < 1.
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When the system is excited again (¢(t) # 0), then the estimator gain
K(t) = P(t)e(t) will be very large, and there will be an abrupt
change in the estimate é, despite the fact that the system has not

changed. This is referred to as estimator windup.
Solution:

e Do not update P(t) if we have poor excitation. There exist

several algorithms for doing this automatically.
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Approximate Algorithms .

The structure of the RPEM (Newton-Raphson)

"

by =b 1) [V 6 1)] VB 1)

e Cumbersome to compute the Hessian V, (8(t — 1)).

e Approximate algorithms that are less computationally
demanding. For instance, ignoring the Hessian:

O(t) = 6(t —1) — vV (B(t —1))"

This leads to the steepest decent algorithm, least-mean-square

algorithm (LMS), ...

.

P(t) Indefinite

P(t) is a covariance matrix = must be symmetric and positive
definite.

Rounding errors may accumulate to make P(t) indefinite (which will
make the estimate diverge). The solution is to note that every
positive definite matrix can be written as

P(t)=St)S™(t)

One then rewrites the algorithm to recursively update S(¢) instead of
P(t) (Potter’s Square Root Algorithm).
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Conclusions

e In practical scenarios, one often need to use recursive identification

(time-varying systems, on-line identification, fault detection).

e Both the LSM and the IVM can easily be recast in recursive forms.
The PEM can only be approximated to a recursive algorithm.

e The properties of the on-line methods are comparable with the off-line

case.

e Tracking capability can be incorporated by using a forgetting factor,

or by modeling the parameter variations.

e Tradeoffs between convergence speed and tracking properties, as well

as between computational complexity and accuracy.

e In practise, one can simplify and modify to make the recursion

cheaper and more numerically robust.
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