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Why?

Why is re
ursive identi�
ation of interest?� Online Estimation.� Adaptive Systems.� Time-varying Parameters.� Fault Dete
tion.
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How?How do we estimate time-varying parameters?� Update the model regularly (on
e every sampling instant)� Make use of previous 
al
ulations in an e�
ient manner.� The basi
 pro
edure is to modify the 
orresponding o�-linemethod, e.g., the least squares method, the predi
tion errormethod.
Le
ture 7 System Identi�
ation 2005 EKL/TS Page 3/ 36

Desirable Properties

We desire our re
ursive algorithms to have the following properties:� Fast 
onvergen
e.� Consistent estimates (time-invariant 
ase).� Good tra
king (time-varying 
ase).� Computationally simple (perform all 
al
ulations during onesampling interval).
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Trade-o�sNo algorithm is perfe
t. The design is always based on trade-o�s,su
h as:� Convergen
e versus tra
king.� Computational 
omplexity versus a

ura
y.
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Re
ursive Least Squares Method (RLS)

^�(t) = argmin� Vt(�); Vt(�) = tXk=1 "2(k)where "(k) = y(k)� 'T (k)�. The solution reads:^�(t) = R�1t rtwhere Rt = tXk=1'(k)'T (k); rt = tXk=1'(k)y(k)
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� The 
riterion fun
tion Vt(�) 
hanges every time step, hen
e theestimate ^�(t) 
hanges every time step.� How 
an we �nd a re
ursive implementation of ^�(t)?
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RLSAlgorithm:At time t = 0: Choose initial values of ^�(0) and P (0)At ea
h sampling instant, update '(t) and 
ompute^�(t) = ^�(t� 1) +K(t)"(t)"(t) = y(t)�'T (t)^�(t� 1)K(t) = P (t)'(t)P (t) = hP (t� 1)� P (t� 1)'(t)'T (t)P (t� 1)1 +'T (t)P (t� 1)'(t) i
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Tra
king

How do we handle time-varying parameters?� Postulate a time-varying model for the parameters. Typi
ally letthe parameters vary a

ording to a random walk and use theKalman �lter as an estimator.� Modify the 
ost fun
tion so that we gradually forget old data.Hen
e, the model is �tted to the most re
ent data (theparameters are adapted to des
ribe the newest data).
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� Modi�ed 
ost fun
tion:^�(t) = argmin� Vt(�); Vt(�) = tXk=1�(t; k)"2(k)� Suppose that the weighting fun
tion �(t; k) satis�es�(t; k) = �(t)�(t� 1; k); 0 � k < t�(t; t) = 1A 
ommon 
hoi
e is to let �(t) = �, where � is referred to as aso-
alled forgetting fa
tor. In this 
ase we get:�(t; k) = �t�k; 0 < � � 1� � = 1 
orresponds to the standard RLS.
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Weighted RLS

Algorithm:At time t = 0: Choose initial values of ^�(0) and P (0)At ea
h sampling instant, update '(t) and 
ompute^�(t) = ^�(t� 1) +K(t)"(t)"(t) = y(t)�'T (t)^�(t� 1)K(t) = P (t)'(t)P (t) = 1�(t)hP (t� 1)� P (t� 1)'(t)'T (t)P (t� 1)�(t) +'T (t)P (t� 1)'(t) i
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Initial Conditions� ^�(0) is the initial parameter estimate.� View P (0) as an estimate of the 
ovarian
e matrix of the initialparameter estimate.� P (0) (and P (t)) are 
ovarian
e matri
es, and must besymmetri
 and positive de�nite.� Choose P (0) = �I.� � large ) large initial response. Good if initial estimate ^�(0)is un
ertain.
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Forgetting Fa
torLet �(t) = �. The forgetting fa
tor � will then determine thetra
king 
apability.� We must have � = 1 to get 
onvergen
e.� � small ) old data is forgotten fast, hen
e good tra
king.� � small ) the algorithm is sensitive to noise (bad 
onvergen
e).� The memory 
onstant is de�ned as T0 = 11��The 
hoi
e of � is 
onsequently a trade-o� between tra
king
apability and noise sensitivity. A typi
al 
hoi
e is � 2 (0:95; 0:99). Itis 
ommon to let �(t) tend exponentially to 1, e.g.,�(t) = 1� �t0(1� �(0))
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The Kalman FilterConsider the system:x(t+ 1) = Fx(t) +Gu(t) + v(t)y(t) =Hx(t) + e(t)where v(t) and e(t) are independent white noise sour
es withEe2(t) = R2 and Ev(t)vT (t) = R1.
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The optimal predi
tor of the state variable x(t) is given by theKalman �lter^x(t+ 1) = F ^x(t) +Gu(t) +K(t)hy(t)�H ^x(t)iK(t) = FP (t)HTR2 +HP (t)HTwhere P (t+ 1) = FP (t)F T � FP (t)HTHP (t)F TR2 +HP (t)HT +R1
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Let us model the parameter variation a

ording to�(t+ 1) = �(t) + v(t)y(t) = 'T (t)�(t) + e(t)Then ^�(t+ 1) = ^�(t) +K(t)hy(t)�'T (t)^�(t)iK(t) = P (t)'(t)R2 +'T (t)P (t)'(t)P (t+ 1) = P (t)� P (t)'(t)'T (t)P (t)R2 +'T (t)P (t)'(t) +R1

Le
ture 7 System Identi�
ation 2005 EKL/TS Page 16/ 36



The tra
king 
apability is a�e
ted by the 
ovarian
e matrix R1 (letR2 = 1 for simpli
ity).� View R1 as a design variable.� Let R1 be a diagonal matrix.� Large elements of R1 ) large parameter variations, and vi
eversa.� The Kalman �lter gives better �exibility than the forgettingfa
tor implementation. One 
an easily assume di�erent variationsin di�erent parameters.
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Re
ursive IVM (RIV)As for the least squares method, it is straightforward to �nd are
ursive version of the IV method^�(t) = h tXk=1z(t)'T (t)i�1h tXk=1 z(t)y(t)ias ^�(t) = ^�(t� 1) +K(t)"(t)K(t) = P (t)z(t)"(t) = y(t)�'T (t)^�(t� 1)P (t) = 1�(t)hP (t� 1)� P (t� 1)z(t)'T (t)P (t� 1)�(t) +'T (t)P (t� 1)z(t) i
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Some 
omments:� The in�uen
e of the design variables P (0), ^�(0) and �(t) is thesame as for the RLS.� RIV ) 
onsistent estimates of A(q�1) and B(q�1) in a ARMAXmodel (time-invariant parameters). Consistent estimates even for
olored noise.
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Re
ursive PEM (RPEM)

To derive a re
ursive PEM, we begin by de�ning the 
ost fun
tion(SISO) Vt(�) = 12 tXs=1 �t�s"2(s;�)It is not possible to derive an exa
t re
ursive algorithm (the o�-linemethod relies on a numeri
al minimization), and some form ofapproximations must be used.
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Assume that ^�(t� 1) minimizes Vt�1(�) and that the minimum pointof Vt(�) is 
lose to ^�(t� 1). Then using a se
ond-order Taylorexpansion of Vt(�), one obtainsVt(�) � Vt(^�(t� 1)) + V 0t (^�(t� 1))�� � ^�(t� 1)�+ 12�� � ^�(t� 1)�TV 00t (^�(t� 1))�� � ^�(t� 1)�Minimize this with respe
t to � and let the minimum be ^�(t):^�(t) = ^�(t� 1)� hV 00t (^�(t� 1))i�1V 0t (^�(t� 1))T

Rem: We must �nd V 0t (^�(t� 1)) and P (t) = [V 00t (^�(t� 1))℄�1!

Le
ture 7 System Identi�
ation 2005 EKL/TS Page 21/ 36

Algorithm:^�(t) = ^�(t� 1) +K(t)"(t)K(t) = P (t) (t)P (t) = 1�hP (t� 1)� P (t� 1) (t) T (t)P (t� 1)�+ T (t)P (t� 1) (t) i

where the a
tual way of implementing the approximations"(t) � "(t; ^�(t� 1)) (t) � �h ��� "(t; ^�(t� 1))idepend on the model stru
ture.Example: ARMAX
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Re
ursive Pseudolinear Regression (RPLR)

Consider the ARMAX modelA(q�1)y(t) = B(q�1)u(t) + C(q�1)e(t)Rewrite the model asy(t) = 'T (t)� + e(t)'T (t) = [�y(t� 1) � � � � y(t� na)u(t� 1) � � � u(t� nb) e(t� 1) � � � e(t� n
)℄� = [a1 � � � ana b1 � � � bnb 
1 � � � 
n
 ℄THere e(t� 1); : : : ; e(t� n
) are unknown! Repla
ing these by thepredi
tion errors "(t� 1); : : : ; "(t� n
) and applying RLS yieldsRPLR. Noti
e "(t) = y(t)� 'T (t)^�(t� 1).
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Comparison between RPEM and RPLR:� The 
omputational demand is similar for the methods.� The RPEM 
onverges under weak assumptions, while for theRPLR 
onvergen
e is not always assured (depends on C0(q�1)).� In some 
ases, it seems as the RPLR has a better/faster transientbehavior than the RPEM.
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Comparing the Methods

In the following, we will examine the following simulated system(1� 0:9q�1)y(t) = 1:0q�1u(t) + (1� 0:9q�1)e(t)where u(t) and e(t) are independent white noise with zero mean andunit varian
e. For RLS and RIV, we use the model stru
ture(ignoring the noise 
olor)y(t) + ay(t� 1) = bu(t� 1) + e(t)� = [a b℄Twith RIV using the instruments z(t) = [u(t� 1) u(t� 2)℄T .
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Figure 1: RLS (left) and RIV (right)
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For RPEM and PLR, we take the noise into a

ount and use themodel y(t) + ay(t� 1) = bu(t� 1) + e(t) + 
e(t� 1)� = [a b 
℄T
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Figure 2: RPEM (left) and RPLR (right)Le
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E�e
t of Initial ValueUsing the same system, we examine the e�e
t of the initial valuesusing RLS, setting P (0) = �I. Larger � gives faster response.
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Figure 3: � = 10 (left) and � = 0:01 (right)
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E�e
t of the forgetting fa
torUsing the ARMA system y(t)� 0:9y(t� 1) = e(t) + 0:9e(t� 1) andthe RPEM. Corre
tion steps and rate of 
onvergen
e in
rease when �de
reases. For � < 1, the estimates do not 
onverge, but os
illatesaround the true value.
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Figure 4: � = 1 (left) and � = 0:95 (right)Le
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Common Problems for Re
ursive Identi�
ation� Ex
itation.� Estimator windup.� P (t) be
omes inde�nite.
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Ex
itationJust as for the o�-line 
ase, it is important that the input ispersistently ex
itation o� su�
iently high order. This applies duringthe whole identi�
ation period.
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Estimator Windup

Often, some periods of an identi�
ation experiment exhibit poorex
itation. This 
auses problems for the identi�
ation algorithms.Consider the extreme situation when '(t) = 0 in the RLS algorithm.Then ^�(t) = ^�(t� 1)P (t) = 1�P (t� 1)Noti
e:� ^� is 
onstant as t in
reases.� P in
reases exponentially with time for � < 1.
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When the system is ex
ited again ('(t) 6= 0), then the estimator gainK(t) = P (t)'(t) will be very large, and there will be an abrupt
hange in the estimate ^�, despite the fa
t that the system has not
hanged. This is referred to as estimator windup.Solution:� Do not update P (t) if we have poor ex
itation. There existseveral algorithms for doing this automati
ally.
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P (t) Inde�nite

P (t) is a 
ovarian
e matrix ) must be symmetri
 and positivede�nite.Rounding errors may a

umulate to make P (t) inde�nite (whi
h willmake the estimate diverge). The solution is to note that everypositive de�nite matrix 
an be written asP (t) = S(t)ST (t)One then rewrites the algorithm to re
ursively update S(t) instead ofP (t) (Potter's Square Root Algorithm).
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Approximate Algorithms

The stru
ture of the RPEM (Newton-Raphson)^�(t) = ^�(t� 1)� hV 00t (^�(t� 1))i�1V 0t (^�(t� 1))T� Cumbersome to 
ompute the Hessian V 00t (^�(t� 1)).� Approximate algorithms that are less 
omputationallydemanding. For instan
e, ignoring the Hessian:^�(t) = ^�(t� 1)� 
tV 0t (^�(t� 1))TThis leads to the steepest de
ent algorithm, least-mean-squarealgorithm (LMS), ...
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Con
lusions� In pra
ti
al s
enarios, one often need to use re
ursive identi�
ation(time-varying systems, on-line identi�
ation, fault dete
tion).� Both the LSM and the IVM 
an easily be re
ast in re
ursive forms.The PEM 
an only be approximated to a re
ursive algorithm.� The properties of the on-line methods are 
omparable with the o�-line
ase.� Tra
king 
apability 
an be in
orporated by using a forgetting fa
tor,or by modeling the parameter variations.� Tradeo�s between 
onvergen
e speed and tra
king properties, as wellas between 
omputational 
omplexity and a

ura
y.� In pra
tise, one 
an simplify and modify to make the re
ursion
heaper and more numeri
ally robust.Le
ture 7 System Identi�
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