Lecture 9

Summary and Practical Aspects — (Ch. 12)
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Figure 2: Schematic flowchart of system identification
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The System Identification Procedure

. Collect data (experiment design, X). If possible choose the input

signal such that the data become maximally informative. Reduce

the influence of noise.

Choose the model structure (M). Use priori knowledge and

engineering intuition. Most important and most difficult step.

(Do not estimate what you already know)

Identification method (Z). Determine the best model in the
model structure (find optimal 0 using e.g., the least squares
method).

. Model validation. Ts the model good enough? Good is subjective,

and depends on the purpose with the model.
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Experiment Design I

Choice of input signal.

Choice of sampling period.

What signals to measure, and what type of sensors to use.
How much data is needed.

Experimental conditions.
— Feedback in the data?
— Test for linearity.

— Test for time-invariance.
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Choice of Input Signal

e Signal amplitude

— Sufficiently small to ensure that we remain in the linear region

of the system.

— Sufficiently large to ensure that we have good excitation.

e Spectral range. The input should have most of its energy in the
interesting frequency regions (depends on the application).

e Persistently exciting of a sufficient order! = Required to assure

consistency of parametric models.

e Physical limitations.
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Determination of Model Structure

e Linear versus nonlinear, static versus dynamic, ...
e Algorithm complexity.
e Computational time and power.

e Depends on the application. Simple or more sophisticated model.

.

Choice of Sampling Period
Data: {u(kh),y(kh)}~_, where h is the sampling interval.
e Undersampling. Cannot pick up the essential dynamic = Poor
accuracy. Also, aliasing!

e Do not forget the anti-aliasing filter!

e Oversampling. Consecutive samples contain almost the same
information = Poor excitation = Numerical and identifiability
problems.
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Static Models
Typical examples:
[ ] TI’OIldS alld non-zero means

e Cyclic components and harmonics

Model:
y(t) =" ()0
where () is deterministic (does not depend on old values of y(t)).

Ex: y(t) = @7 (1)6, o7 (1) = [L t £°].
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Dynamic Models
General models:
y(t) = Glg)u(t) + H(g")e(t)
y(t) = " (1) + (1)
where ¢(t) depends on old values of y(t).
e Typical models: ARX, ARMAX, OE.

e The models have a certain dynamic range and are valid around a

particular “working point”.
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Identification Methods

e Nonparametric Methods
— Transient response, frequency response, spectral analysis.
— Gives basic information about the system, and is useful for
validation
e Parametric Methods: Static and dynamic cases

— Least squares methods, instrumental variable methods,
prediction error methods

— Good accuracy. Easy to use for, e.g., control

e On-line or off-line methods.
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In Practice
Data contain both static and dynamic components:
y(t) = ys(t) + ya(t)
where y;() is a static component and y4(t) is a dynamic component.
e Remove the static component before estimating the dynamic
model. For example: detrend the data.
e Estimate the static component.
e Handling non-zero means.
. J
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Least Squares Methods
System:
y(t) =T ()0 +v(t), t=1,...,N
Y=®0+v
where v(#) is a disturbance and Ev = 0, EvvT = R.
Estimate:
X N N
b= (@"®) 7Y = [ Y e’ ()] | ey
t=1 t—1
. J
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Static case: Here () is deterministic.
e Generally consistent estimates
e For finite value of N we have:
E6 = 6,
covh = (87®)"'dTR®(TH) !
e Can be extended to include the weighted least squares and the
BLUE.
Dynamic case: ¢(t) depends on old values of y(t).
e Consistent estimates if v(t) = e(t) is white noise! (Ee?(t) = A\?)
e Asymptotically (N — oo) it holds (v(t) = e(t))

cov B = N2 [Ep(t)p" (1)) B

.
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Results:

e Consistent estimate if:
Ez(t)e"(t) has full rank
Ez(t)v(t) =0
e The basic IV can be extended to include filtering and weighting.

e In general bad accuracy. Can be improved by, for instance,

appropriate filtering.

.

Instrumental variable methods
System:
y(t) =" (0 +v(t), t=1,...,N

where v(t) is a disturbance with Ev(t) = 0.
Estimate: Modify the least squares solution. We get:

N N

b= =we"o] [ 0w

t=1 t=1

where z(t) is the vector of instruments.

J
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Prediction error methods

Idea: Model the noise as well. General methodology applicable to a

broad range of models.
The following choices have to be made:

e Choice of model structure. Ex: ARMAX, OE.

e Choice of predictor §(t|t — 1,0).

e Choice of criterion function. Ex: V(8) = & > &%(t,0).
Estimate:

0 = arg mein V(0)

.

J
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Results:

e In general we need to perform a numerical minimization.

e Consistent estimates (if the model covers the true system).

e In general statistically efficient estimates (Gaussian noise).

e Useful also for approximations.
. J
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Alternative Methods

e Subspace methods

e Nonlinear methods

e ..
. J
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On-line methods (Recursive Identification)
e In many cases an on-line estimate is required. Ex: adaptive
signal processing, adaptive control.
e Tracking time-varying parameters.
e Fault detection.
Most off-line methods can be converted into on-line methods (exact
or approximate).
. J
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Model Validation
A model is of no use unless it is validated!
e Check the residuals.
e Pole-zero cancellation.
e Cross validation.
e Parsimony principle.
. J
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Implementation Aspects
Most of the theory covered in the course is “implemented” in the
System Identification Toolboz.
One can learn a lot by studying the toolbox. For example, type help
ident or iddemao.
. J
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Figure 1: Graphical interface: ident
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iddemo

1) The Graphical User Interface (ident): A guided Tour.
2) Build simple models from real laboratory process data.
3) Compare different identification methods.

4) Data and model objects in the Toolbox.

5) Dealing with multivariable systems.

6) Building structured and user-defined models.

7) Model structure determination case study.

8) How to deal with multiple experiments.

9) Spectrum estimation (Marple’s test case).

10) Adaptive/Recursive algorithms.

11) Use of SIMULINK and continuous time models.

12) Case studies.

.
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Case Study: Energizing a Transformer

In this case study we shall consider the current signal from the

measurements were performed by Sydkraft AB in Sweden.
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L Figure 2: Data

R-phase when a 400 kV three-phase transformer is energized. The
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Let us instead compute spectra by parametric AR-methods. Models

of 2nd 4th and 8th order are considered:

. Spectrum
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We see that the parametric spectra are not capable of picking up the
harmonics. The reason is that the AR-models attach too much

attention to the higher frequencies, which are difficult to model.

( )
Let us check the spectrum of the signal:
B Spectrum
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We see that a very large lag window will be required to see all the
fine resonances of the signal. Standard spectral analysis does not
work well.
. J
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Let us check all orders up to 30:
Model Fit vs # of par's P
Blue: AIC Choice 20
820
g Red: Best it Fit= 9.32189
215 ha= 20
g b=
%10 k=
g Select I
£ 5
M —
#of par's
Click other bar or press SELECT.
Figure 3: Model fit.
We see a dramatic drop for n = 20, so let’s pick that order
. J
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ARX of order 20:
. Spectrum
10 T T
— Spectrum
ARX20
10°
10°
]
1f \_/
107
10740 560 1600 1500 ZObD 25‘00 3600 3500
All the harmonics are now picked up, but why has the level dropped?
The reason is that ARX20 contains very thin but high peaks. With
the crude gitter of frequency points in the plot we simply don’t see
the true levels of the peaks. We can illustrate this as follows: y
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If we are primarily interested in the lower harmonics, and want to use
lower order models we will have to apply prefiltering of the data. We
select a fifth order Butterworth filter with cut-off frequency at 200
Hz. (This should cover the 50, 100 and 150 Hz modes).

.
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Conclusion:

Measured Output and 50-step Ahead Predicted Model Output
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For a complete model of the signal, ARX20 thus is the natural
choice, both in terms of finding the harmonics and in prediction
capabilities. For models in certain frequency ranges we can however
do very well with lower order models, but we then have to prefilter
the data accordingly.

.

Model the lower harmonics:

Spectrum

al — ARX8—f ||
ARX8
—— Spectrum
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Conclusions

e System identification is a powerful technique to model dynamic

systems.
e Applications in virtually all disciplines of science.
e Implemented in e.g., MATLAB.

e Where to learn more: Nice advanced text-book by Ljung,
journals (Automatica) and conferences (IFAC SYSID).
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