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Lecture 2

e Linear Regression
e The Least Squares Method
e Properties of the (deterministic) Least Squares Estimator

e BLUE

e Computational Aspects
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Linear Regression

SI Procedure: (a) collect data, (b) choose a model class, (c)
find the best model in the model class, (d) model validation.

e Linear regression models

— Conceptionally simple

— Simple to analyze

— Simple to implement

— Low memory consumption

— Common in Signal Processing. Ex. Echo cancellation

e Original work by Gauss 1809

e Starting point of S
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Linear Regression (Ct’d)

e Model Structure (M):

(t) = 3 Oizilt) = o(1)7

where yg(t) € R is the model output at time t; ¢(t) € R"
is a (column) vector of known quantities; and 6 € R" is a
(column) vector of unknown 'parameters’.

e Stacking up the model fort =1,..., N gives

Yy = DO

with Yy = ; c RN and ¢ = : c RVx7,

e Linear regression can also be used for certain nonlinear models
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Linear Regression (Ct’d)

Problem Find an estimate of 6 given measurements
p(1),y(1),...,0(t),y(t),... satisfying

y(t) = yo(t) +v(t) = @(t)" 0 + v(t)

Disturbances v(t)

Input (Signal) System Output (signal)  Input (Signal) J Model Output [sigg_al]
—_— — -

uit) yit) uit) yit)

e Noiseless case (v(t) =0, M = S). exact Solution exists.

e What to do when noise v(t) # 0 and/or M # S.
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Least Squares (Optimization)

Introduce the equation error

EQ(t) — y(t) - yQ(t) — y(t) _ Sp(t)H? t=1,....,N

or compactly
€p — Y — Y@

Least Squares Method: Choose 6 such that ||eg]|2 is smallest

N
1
O; = argmin V' (0) =5 Z €p(t) = —69 €y
0 =1
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Results: Assume that ®7 ® is invertible, then
Ors = (2T0) oY,

This estimator is known as the Ordinary Least Squares (OLS)
estimator.

Weighted Least Squares estimate: Let W = W1 ¢ R*xn
be a positive definite symmetric matrix, then

A 1
Ow s = argmin Vv (0), Vi (6) = §egW€9
0

when (®T'W®) is invertible, the solution becomes
Owrs = (PTWO)1dTWY.

Note: when W = In, QLS = QWLS-
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Least Squares (Geometric Approach)

e Model:
Yo =00 = [Dq,...D,] 0

e Measurements Y.
e Y and ®; are vectors in the vector space RY

e Objective: Find a linear combination of the vectors &,
(¢ =1,...,n) that approximates Y as good as possible.

e Solution: Let {®;}! ; span a subspace D, C R", then
the best approximation Y, to Y in D, is the orthogonal
projection.
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e Define the inner product of vectors z,y € RY defined as

< T,y >= xTy

e Orthogonal Projection: the approximation error Y — Y, is
orthogonal to ®;, or

<P, (Y-Y,) >=0/(Y-Y,) =0
foralle =1,...,n.

e Consequently
(Y -Y;) =0

o If éop orthogonal projection, then

(Y - Y,

Oopr

)=0= (27®)fop = 7Y

e Using the weighted inner-product < z,y >= z! Wy yields
WLS.

S1-2010 K. Pelckmans Jan.-March, 2010 9



Least Squares, Average and Maximum
Likelihood

e Simple model.

OLS:

e Statistical model.

1 o 2
Yy~ N(p, \%) = o P <—(y2)\5) )

Then the Likelihood function of Y = & becomes

L,(z) = \/2;76@ (—@’2}5‘)2)
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e If NV independent datasamples {y(t)}:, then

; al A (y — 1)
Oy = m/?XHLM(y(H)) = H s exp (— N2 )
t=1 k=1
e Equivalently
) N N
0y, = argmax log H L,(y(t)) = argmin Z(y(t) — p)?
H t=1 Hoi=1
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Least Squares (Statistical Approach)

In order to explore properties of the least squares estimate we
need to specify the system, i.e. we need to make assumptions
on how the data was generated.

Assumptions:

e () is known and deterministic. (Quite restrictive!)

e System
y(t) = @(t)bo + e(t)
where 0o € R™ is the true parameter, and (e(t)); is a sequence
of random variables, with Ele(t)] = 0, Ele(t)e(s)] = Rys, or

E[e] — On, E[ee] — COV(e) — R ¢ Ran

Rem. If R = 021, then e is white noise with variance 2.
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Least Squares (Statistical Approach), Ct'd

o The WLS is unbiased or E [éms} — 0, when E[®Te] =0,
(@1 @) 1®! E[®6y + €] = b,

e Covariance matrix

cov (

gt
N——"
|
Ry
1
/N
A
|
S|
2
N—"
VS
a
|
S|
£
N——"
N
| I |

as

(Owrs — Elfwrs])
= (TWO) o'W (Pl + e) — (' WD) H (D WD)b,
= (d'"Wo) 'd! We
then

cov(i@wrs) = (PTWP) " HTWRW)(¢TWo) ™!
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For OLS and R = %Iy, then

A

o (1 -t
COV(QLS) = N (N(I)T(I))

e If e(t) ~ N(0,R) and ® deterministic, then

Owirs ~N (90, COV(éWL5)> .
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A

Least Squares (optimal cost Vi (015))

Property )
E[QVN(G’Ls)] = 0'2(N — n)

Proof

2Vn(Ors) = (Y — ®0.,5)T(Y — ®015)
=Yy —vio@'e) o'y —vio@'e) oty
+YTo@Te) Y(dTd)(oTD) Y
=YY" (In —®(®"®) '0") Y

Taking expectation gives

A

E[2Vn(01s)]
= E[(®0y + )" (In — D(2" @)~ 'D") (Db + )]
= Ele' (Iy—®(@"®) ") €.
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Using the property that elde = > " | > i (eiej) Ay =
tr(A(eel)) for any matrix A € R™"*™ and vector e € R™:

E[2Vn(015)] = tr (In — ®(@T®)~'07T) Elee”])
=o” (tr(In) — tr(®(2" @) '0"))
= 0% (N —tr((@"®) (2" ®))
= 0%(N —n)

where we also use Iinearity of tr, i.e. tr(AB) = tr(BA) for

2VN(9LS)

g is an unbiased estimate of

arbitrary matrices. So 6% =

o2.

Note that
E2V,(0y)] = ele = 0N
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Least Squares (Statistical Approach), Ct'd

e An estimate él Is more efficient than ég ii

A A

cov(f1) < cov(f2)

e Which choice of W will yield a maximally efficient estimate
Owrs?

e The choice W = R™! (if exists) yields optimal efficiency, or

— Owrs = (PTR71®) T OTRLY
— COV(éWLs) = ((I)TR_lq))_l

In this case the estimator is known as the BLUE (Best Linear
Unbiased Estimate) or the Gauss-Markov estimate.
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Least Squares (Statistical Approach), Ct'd

e BLUE = Best Linear Unbiased Estimate.
e When e white noise (R = ¢*I,,), BLUE=OLS.

e |f e Gaussian, BLUE is best possible estimator. If e non-
Gaussian, there might exist better 'non-linear’ estimators.

e BLUE can be derived also for non-invertible covariance
matrices R.
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Least Squares (Computational Aspects)

The OLS solution is unsuitable for direct numerical
computation. Alternatives avoid computation of the inverse

(@1 d)~1
e Use the normal equations instead:

(®T®)0pg = dTY

e Solve an overdetermined system of linear equations
Ph=Y

Stable numerical procedures:

— QR-Factorization
— SVD-Factorization
— Using Pseudo-inverse
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Least Squares (Computational Aspects)

QR-Factorization Let ® = QR where Q € RYX¥
orthonormal (QQ? = Q1 Q = Iy) and RY*"™ upper triangular,

then instead of solving
Y ~ PO

one may equivalently solve
Q'Y = Q'd0 = RH
which is easy due to the structure of R:

e Requires more computation than solving the normal
equations.

e Less sensitive to rounding errors
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Least Squares (Computational Aspects), Ct’d

SVD: Let
d=U'YV
with U € RV*N v ¢ R»*n, UTU = UUT = Iy, VIV =
vv?l =1,

Y — [dlag(al,o .. ,O'n)] c RNXH

containing the singular values. Then (&1 ®)~! = V'YX 72V and
Ors = (@T®)10TY

_ (VTZ_QV)(VTZU)Y _ VT [dlag(al yeeey O

In MATLAB:

>> [U,S,V] = svd(Phi);
>> theta = Vxpinv(S)*Ux*xY
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Least Squares (Computational Aspects), Ct’d

Pseudo-inverse Defined as
ol =UTYV
and

(dTP)T = VIxixTvV
Then

0,61 = (T®) 0TY
= (VISISIV)(VIZU)Y = VIZTUY
e Avoids singularity issues.

e If multiple solutions possible, take lowest ||6]|2

In MATLAB:
>> theta = pinv(Phi)*Y
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Conclusions

e Regression (linear in the parameters) models describe a large
class of dynamical models.

e The LS estimator is fundamental in SI and can be derived
from various perspectives.

e We have assumed that ® is deterministic. We run into
problems when this matrix is a function of stochastic variables

(ARX).
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