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Lecture 3

• Nonparametric Methods (Ch. 3)

• Input Signals (Ch. 4)

• Model Parametrizations (Ch. 5)
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System Identification

’Obtain a model of a system from measured inputs and
outputs’

Type of model depends on purpose, application and system.
Often we can assume that the true system can be described as
a LTI system.

y(t) = G0(q−1)u(t) + v(t),

or equivalently

y(t) =
∞∑
τ=1

g0(τ)u(t− τ) + v(t)

Q: How to approximate G0(q−1) from measurements?
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Parametric Models

Postulate a model class parametrized by θ ∈ Θ:

MΘ =
{
G(q−1, θ) : θ ∈ Θ

}
• Easy to use for simulation, control design, etc. ...

• Often accurate models.

• Ex. FIR model

y(t) = u(t) + b1u(t− 1) + · · ·+ bτu(t− τ)

or y(t) = GF (q−1, θ) with

GF (q−1, θ) = 1+b1q−1+· · ·+bτq−τ , θ = (b0, . . . , bτ)T ∈ Rτ+1

Q.: Can we determine Q0 without postulating a model?
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Nonparametric Identification

Nonparametric models: Determine G0 without postulating
MΘ.

• Simple to obtain

• Graphs, curves or tables, but often no simulation

• Often used to validate parametric models

• Transient, correlation, frequency and spectral analysis.
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Transient Analysis

Impulse response analysis: Apply the input

u(t) =

{
k t = 0
0 else

to the system G0. This gives the output signal

y(t) = kg0(t) + v(t)

and this motivates the impulse estimate for all τ ≥ 0

ĝ(τ) =
y(τ)
k
.
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Transient Analysis (Ct’d)

Step response analysis: Apply the input

u(t) =

{
k t ≥ 0
0 else

to the system G0. This gives the output signal

y(t) = k

t∑
k=1

g0(k) + v(t)

and this motivates the impulse estimate for all τ ≥ 1

ĝ(τ) =
y(τ)− y(τ − 1)

k
.
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Figure 1: Transient Behavior of G0 on a step input u(t)
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Transient Analysis

• Input taken as impulse or step.

• ’Model’ consists of recorded outputs y(t), or estimates of
g0(t)

• Convenient to derive crude models. Gives estimates of time-
constants time-delays and static gain.

• Sensitive to noise.

• Poor excitation.
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Correlation Analysis

System

y(t) =
∞∑
k=1

g0(k)u(t− k) + v(t)

where u(t) is a stochastic process independent of v(t).
Multiplication with u(t′) of both sides and taking expectations
gives (τ = 0, . . . , t) that

ruy(τ) =
∞∑
k=1

g0(k)ruu(τ − k)

which is known as the Wiener-Hopf equation.

In practice, truncate the sum and solve the linear systems of
equations

r̂uy(τ) =
M∑
k=1

ĝc(k)r̂uu(τ − k)

Estimates of the covariance functions r̂uy and r̂uu gives (for
τ ≥ 0)
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• First choice

r̂uy(τ) =
1
N

N−τ∑
k=1

y(k + τ)u(k).

• Second choice

r̂uy(τ) =
1

N − τ

N−τ∑
k=1

y(k + τ)u(k).

Which one to prefer?
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Frequency Analysis

Estimate G0(eiω). Apply input signal

u(t) = α cos(ωt)

to G0(eiω). This yields output signal

y(t) = α
∣∣G0(eiω)

∣∣ cos(ωt+ ϕ) + v(t)

• Repeat experiment for different frequencies ω (t = 1, . . . , N)

• Determine the phase shift ϕ and the amplitude of the output.

• Results in a Bode plot
{∣∣G0(eiω)

∣∣}
ω

and
{
∠G0(eiω)

}
ω

• Sensitive to noise. requires long experiments.

• Gives basic information about the system.
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Spectral Analysis

• The Wiener-Hopf equation in the frequency domain is given
as

φuy(ω) = G(e−iω)φu(ω)

• An estimate of the transfer function can be given as

Ĝ(e−iω) =
φu(ω)
φuy(ω)

• Use estimate of the spectral densities, e.g.

φ̂(ω) =
1

2πN

N∑
τ=−N

r̂yu(τ)e−iτω
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• Errors in r̂uy contaminate → not consistent!

– N large, then total norm of error is large even if r̂uy is
small for all τ .

– r̂uy decreases slowly, then poor estimates of r̂uy for large
τ .

• Better estimates obtained if ’window w(τ)’ used

φ̂(ω) =
1

2πN

N∑
τ=−N

r̂yu(τ)w(τ)e−iτω

• Choice of window is a trade-off between bias and variance
(high resolution and reducing erratic fluctuations)
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Summary - Nonparametric Methods

• Results often in graph or table (step response, transfer
function, ...)

• Transient analysis (step- and impulse response)

• Frequency analysis (sinusoidal input)

• Correlation analysis

• Spectral analysis (transfer function)

• Useful for obtaining crude estimates of time-constants, cut-off
frequencies etc. for model validation.
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Input Signals (Ch. 5)

The quality of the estimated model depends on the choice of
input signal.

Examples:

• Step function

• Pseudo-random binary sequences (PRBS)

• Autoregressive moving average process (ARMA)

• Sum of sinusoids.
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Most often the input signal is characterized by its first and
second moments:{

m = E[u(t)]
r(τ) = E

[
(u(t)−m)(u(t)−m)T

]
and/or its spectral density:

φ(ω) =
1

2π

∞∑
τ=−∞

r(τ)e−iτω

Rem. for stationary signals

m =
1
N

N∑
t=1

u(t)
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Step function

u(t) =

{
k t = 0
0 else

Properties

• Mostly used for transient analysis: overshoot, static gain,
major time-constants.

• Limited use for parametric modeling.
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Pseudo-Random Binary Sequences (PRBS)

A PRBS (u(t))t is a periodic, deterministic signal with white
noise-like properties.

u(t) = rem
(
A(q−1)e(t), 2

)

Properties

• The signal takes values {0, 1} in a fashion dictated by A.

• Spectral properties are determined by A(q) and in particular
by the period length M = 2n − 1.

• Deterministic sequence behaving as noise (reproducible).
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Figure 2: PRBS signal taking values in {−1, 1}, M = ∞.
Realization (left), Spectral density (right).
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ARMA Process

A(q−1)y(t) = C(q−1)e(t)

where e(t) is white noise with E[e(t)] = 0 and E[e(t)e(s)] =
λ2δts.

Properties

• The signal u(t) can be obtained by filtering e(t).

• The filters (A,C) can be tuned to possess (almost) any
frequency characteristics.

• The spectral density of an ARMA process y(t) is given as

φy(ω) =
λ2

2π

∣∣∣∣C(eiω)
A(eiω

∣∣∣∣2
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Figure 3: ARMA process. Realization (left), Spectral density
(right).
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Sum of Sinusoids

u(t) =
M∑
m=1

am sin(ωmt+ ϕm).

Properties

• User parameters am, ωm, ϕm.

• Covariance function given as

r(τ) =
M∑
m=1

a2
m

2
cos(ωmt+ ϕm).

• Spectral Density function given as

φ(ω) =
M∑
m=1

a2
m

2
[δ(ω − ωm) + δ(ω − ωm)] .
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Figure 4: Sum of 2 sinusoids. Realization (left), Spectral density
(right).

SI-2010 K. Pelckmans Jan.-March, 2010 23



Persistent Excitation

In order to obtain a good estimate of a (parametric) model,
the input signal has to be ’rich’ enough so that all ’modes’ of
the system are excited.

An inout is said to be persistently exciting (PE) if:

• The following limit exists for all τ

ru(τ) = lim
N→∞

1
N

N−τ∑
t=1

u(t+ τ)uT (t)

Rem. u(t) ergodic implies that for any t

ru(τ) = E[u(t+ τ)uT (t)]
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• The matrix Ru(n)

Ru =


ru(0) ru(1) . . . ru(n− 1)
ru(1) ru(0) . . . ...

... . . .
ru(n− 1) . . . ru(0)


is positive (strictly) definite.

• Or, det(Ru(n)) 6= 0.

• Or u(t) is PE of order n if φu(ω) 6= 0 on at least n points on
the interval −π < ω < π.
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An input signal is PE of order 2n can be used to consistently
estimate parameters of a model of order ≤ n.

• A step function that is PE of order 1

• A PRBS with period M is PE of order M .

• An ARMA process is PE of any finite order.

• A sum of m sinusoids is PE of order 2M (if ωm 6= 0,−π, π)
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Another important observation!

A parametric model becomes more accurate in the
frequency region where the input signal has a major part
of its energy.

A physical process is often of low frequency character → use
low-pass filtered signal as input.
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Summary - Input Signals

• The choice of input signals determines the quality of the
estimate.

• The estimated model is more accurate in frequency regions
where the input signal contains much energy.

• An input signal has to be ’rich’ enough to excite all interesting
modes of the system (PE of sufficiently high order).

• In practice there might be restrictions on the input.
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Model Parametrization (Ch. 6)

Mathematical models can be derived from:

• Physical models

• Identification
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Classification of mathematical models:

• SISO - MIMO.

• Linear - Nonlinear models.

• Parametric - Nonparametric.

• Time-invariant - time-varying.

• Time-domain - Frequency domain.

• Discrete-Time - Continuous-Time.

• Deterministic - Stochastic.
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General Model Structure (SISO)

y(t) = G
(
q−1, θ

)
u(t) +H

(
q−1, θ

)
e(t)

• where

G
(
q−1, θ

)
=
A
(
q−1
)

B (q−1)
=
b1q
−nk + b2q

−nk−1 + · · ·+ bnbq
−nk−nb+1

1 + a1q−1 + · · ·+ anaq
−na

• and

H
(
q−1, θ

)
=
C
(
q−1
)

D (q−1)
=

1 + c1q
−1 + · · ·+ cncq

−nc

1 + d1q−1 + · · ·+ dndq
−nd

• and e(t) is white noise with variance λ2 and

θ =
(
a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc, d1, . . . , dnd,

)T
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• Often λ2 = λ2(θ).

Assumptions

• Time delay nk ≥ 1→ G(0, θ) = 0 (often also G(0, θ) = 0).

• G−1(q−1, θ) and H−1(q−1, θ) are asymptotically stable (...).
Often also H(q−1, θ) needs to be asymptotically stable.
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General Model Structures (Ct’d)

Commonly used simplified models

• ARMAX

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t).

Here A(q−1) describes the dynamics. Both inputs and noise
are governed by the same dynamics.

• ARX
A(q−1)y(t) = B(q−1)u(t) + e(t).

• FIR
y(t) = B(q−1)u(t) + e(t).

• OE

y(t) =
B(q−1)
A(q−1)

u(t) + e(t).
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General Model Structures (Ct’d)

Time series models (no ’input’ signal u(t))

• ARMA
A(q−1)y(t) = C(q−1)e(t).

• AR
A(q−1)y(t) = e(t).

• MA
y(t) = C(q−1)e(t).

Time series models are useful in various disciplines, e.g. economy,
astrophysics, speech, etc... .

SI-2010 K. Pelckmans Jan.-March, 2010 34



Uniqueness and Identifiability

Uniqueness: Let the true system S be described by G0, H0

and λ2
0.

Introduce the set

DT =
{
θ
∣∣∣ G0 = G(q−1, θ), H0 = H(q−1, θ), λ2

0 = λ2(θ)
}

• |DT | = 0 underparametrized model structure

• |DT | > 1 overparametrized model structure (numerical
problems are likely to occur)

• |DT | = 1 Ideal case. The system has a unique description as
θ0
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Figure 5: Model structure (Green area), actual ’true’ system S,
estimate θ and best approximation θ0.
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Uniqueness and Identifiability (Ct’d)

Identifiability:

• System Identifiability (SI): |DT | > 0, and θ̂ ∈ DT if N →∞.

• Parameter Identifiability (PI): If the system is SI and |DT | = 1
(or θ̂ → θ0).

In other words, if the choice of model, input signal and
identification method makes the estimated parameter vector θ̂
converge (with probability 1 as N →∞) to a parameter vector
that perfectly describes the system as the number of datapoints
tends to infinity, then the system is System Identifiability (SI).
If the system is uniquely described by an element in the model
structure and is SI then the system is said to be parameter
identifiable (PI).
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Summary - Model Parametrizations

• It is essential that the model structure suits the actual system.

• Many standard model structures are available, each one using
a different approach of modeling the influence of input u(t)
and disturbance signals e(t).

• Finding the correct, or the best, model structureM and model
order(s) (na, nb, nc, nd)T is normally an iterative procedure
(see Ch. 11)

• A model should ideally be unique and the complete
experimental setup should be such that the system is PI.

• Not included: Ex. 6.3, 6.4, 6.6, continuous-time models.
”Kursivt” ex. 6.5.
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