System Identification, Lecture 4

Kristiaan Pelckmans (IT/UU, 2338)

Course code: 1RT875, Report code: 61806, F, FRI Uppsala University, Information Technology

26 January 2010

SI-2010

K. Pelckmans

Jan.-March, 2010

Lecture 4

• Prediction Error Methods (PEM) (Ch. 7)

The Least Squares Method

- Chapter 4: the least squares method applied to static (deterministic) linear regression models ($\varphi(t)$ deterministic).
- What happens when we consider dynamic models?

$$A(q^{-1})y(t) = B(q^{-1})u(t) + e(t)$$

Write as

$$y(t) = \varphi^T(t)\theta + e(t)$$

where

$$\varphi(t) = (-y(t-1), \dots, -y(t-n_a), u(t-1), \dots, u(t-n_b))^T$$

and

$$\theta = \left(a_1, \dots, a_{n_a}, b_1, \dots, b_{n_b}\right)^T$$

SI-2010

• Least Squares estimator:

$$\hat{\theta}_{LS} = \left(\frac{1}{N}\sum_{t=1}^{N}\varphi(t)\varphi^{T}(t)\right)^{-1}\frac{1}{N}\sum_{t=1}^{N}\varphi(t)y(t)$$

Properties: Assume the 'true' system can be described as

$$y(t) = \varphi^T(t)\theta_0 + v(t)$$

Then, the least squares estimate $\hat{\theta}_{LS}$ will be consistent ($\hat{\theta}_{LS} \rightarrow \theta_0$ as $N \rightarrow \infty$), if

- $E[\varphi(t)\varphi^T(t)]$ is nonsingular.
- $E[\varphi(t)v(t)] = 0$

The first condition will be satisfied in most cases. A few exceptions

- The input is not persistently exiting of order n_b .
- The data is noise-free $(v(t) \equiv 0)$ and the model order is chosen too high (this implies that A and B have common factors).
- The system operates under feedback with a low order regulator.

The second condition is in most cases *not* satisfied. A notable exception is when e(t) is white noise.

Modifications of the Least Squares Methods

The second constraint is relaxed as follows:

- Prediction error Methods. Models the noise as well!
- The Instrumental variable methods (IV methods) modify the normal equations of the least-squares estimator.

Prediction Error Methods (PEM)

Idea:

- Models the noise as well \rightarrow stochastic model, i.e. the outputs of the models are not deterministic.
- Minimize the prediction errors $\epsilon(t,\theta) = y(t) \hat{y}(t|t-1,\theta)$
- The LS estimator is a special case, where

$$\epsilon(t,\theta) = y(t) - y(t|t-1,\theta) = y(t) - \varphi^T(t)\theta.$$

Hence, a general methodology applicable to a wide range of model structures.

Examples.

Find the optimal predictor, $\hat{y}(t|t-1)$ for the following systems assuming E[e(t)] = 0 and $E[e(t)e(s)] = \lambda^2 \delta_{ts}$ (notice that y(t|t-1) is a function of $\{(u(s), y(s))\}_{s < t}$).

- y(t) = e(t)
- $(1 0.1q^{-1})y(t) = -0.5q^{-1}u(t) + e(t)$
- $(1 0.1q^{-1})y(t) = -0.5q^{-1}u(t) + (1 0.8q^{-1})e(t)$

Predictions

A predictor can be described as a filter that predicts the output of a dynamic system given past measured input- and output signals. Design the predictor as

- Choose the model structure \mathcal{M} , e.g. ARX, OE or ARMAX
- Choose the predictor $\hat{y}(t|t-1,\theta).$ A general predictor can be viewed as

$$y(t|t-1,\theta) = L_1(q^{-1},\theta)y(t) + L_2(q^{-1},\theta)u(t)$$

where L_1 and L_2 are such that they only take past measurements into account.

Optimal Predictor

We will here consider the general model structure:

$$y(t) = G(q^{-1}, \theta)u(t) + H(q^{-1}, \theta)e(t)$$

where E[e(t)] = 0 and $E[e(t)e(s)] = \lambda^2 \delta_{ts}$.

Goal: Find the optimal mean least square predictor $\hat{y}(t, t - 1, \theta)$, i.e. solve

$$\min_{y(t|t-1,\theta)} E[\epsilon(t)\epsilon^{T}(t)]$$

where $\epsilon(t) = y(t) - y(t|t - 1, \theta)$ is the prediction error and $\hat{y}(t|t - 1, \theta)$ depends on the past measurements only.

Results: Under the assumptions that

- z(t) only depends on past measurements.
- u(t) and e(s) are uncorrelated for t < s

then

$$\hat{y}(t|t-1,\theta) = H^{-1}(q^{-1},\theta)G^{-1}(q^{-1},\theta)u(t) + \left(I - H^{-1}(q^{-1},\theta)\right)y(t)$$
(1)

is the optimal mean square predictor, and $\boldsymbol{e}(t)$ the prediction error, and

$$\epsilon(t,\theta) = y(t) - \hat{y}(t|t-1,\theta)$$

= $H^{-1}(q^{-1},\theta)y(t) - G^{-1}(q^{-1},\theta)u(t)$
= $e(t).$

Hence

$$E[\epsilon(t,\theta)\epsilon^T(t,\theta)] = \Lambda(\theta)$$

SI-2010

Optimal Prediction for State Space Models

As an alternative to the model structure:

$$y(t) = G(q^{-1}, \theta)u(t) + H(q^{-1}, \theta)e(t),$$

it is common to use a state-space model with states $(x(t))_t \subset \mathbb{R}^n$

$$\begin{cases} x(t+1) = F(\theta)x(t) + B(\theta)u(t) + v(t) \\ y(t) = C(\theta)x(t) + e(t) \end{cases}$$

where v(t) and e(t) are uncorrelated white noise sequences with zero mean and covariance matrices \mathbf{R}_1 and \mathbf{R}_2 .

In this case the optimal mean square predictor is given by the Kalman filter (see p.196).

SI-2010

Cost Function

How do we find the best model in the model structure?

- Minimize the prediction errors $\epsilon(t, \theta)$ for all t. How?
- Choose a criterion function $V_N(\theta)$ to minimize

$$\hat{\theta} = \operatorname*{argmin}_{\theta} V_N(\theta)$$

where $V_N(\theta)$ depends on $\epsilon(t, \theta)$ is a suitable manner.

Depending on the choice of model structures, predictor filters and criterion function, the minimization of the loss function is simple/difficult. For MISO systems the following criterion function is most often used:

$$V_N(\theta) = \frac{1}{N} \sum_{t=1}^N \epsilon^2(t,\theta).$$

In general, the cost function is choses as

$$V_N(\theta) = h(\mathbf{R}_N(\theta)),$$

where $h : \mathbb{R}^{n \times n} \to \mathbb{R}$ is a scalar-valued, monotonically increasing function, and $\mathbf{R}_N(\theta)$ is the covariance matrix of the prediction errors, or

$$\mathbf{R}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \epsilon(t, \theta) \epsilon^T(t, \theta).$$
$$h(\cdot) = \operatorname{tr}(\cdot) \text{ or } h(\cdot) = \operatorname{det}(\cdot).$$

Ex.

A PEM Algorithm

In order to make a PEM, the user has to make the following choices:

- Choice of model structures. How should G^{-1} , H^{-1} and Λ be parametrized by θ ?
- Choice of predictor. Usually the optimal mean square predictor is used.
- Choice of criterion function $V_N(\theta)$. A scalar-valued function of all prediction errors $\{\epsilon(t, \theta)\}_t$ which will assess the performance of the predictor used.

Computational Aspects

Analytical (closed-form) solutions exists If the predictor is 'linear-in-the-parameters', or

$$\hat{y}(t|t-1,\theta) = \varphi^T(t)\theta,$$

and the associate criterion V_N is simple enough, a closed form solution may exists. For example if

$$V_n(\theta) = \frac{1}{N} \sum_{t=1}^N \epsilon^2(t,\theta),$$

PEM is equivalent to OLS. This holds for example for ARX or FIR models, but *not* for ARMAX or OE models.

No Analytical (closed-form) solutions exists In general criteria, and for predictors that are not 'linear-in-the-parameters', a numerical search algorithm is required to find θ that minimizes $V_N(\theta)$.

SI-2010

Numerical minimization

- Nonlinear optimization \rightarrow local minima may exist.
- Time-consuming (convergence rate) and computationally complex.
- Initialization.

Different (standard) methods available:

• The **Newton-Raphson** algorithm.

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} - \alpha_k \left(V_N''(\hat{\theta}^{(k)})^{-1} V'(\hat{\theta}^{(k)}) \right)$$

The gradient (Hessian) of the cost-function are often computationally expensive to calculate. Fast Convergence.

- The **Gauss-Newton** algorithm is a computationally less demanding algorithm, with a (theoretically) slower rate of convergence.
- **Gradient-based** methods are simple to apply, but even slower convergence rates.
- **Grid-search** Search the whole parameter space. VERY time-consuming.

Theoretical Analysis

Assumptions

- The signals $(u(t), y(t))_t$ are stationary stochastic processes.
- The input sequence if PE.
- $V_N''(\theta)$ is nonsingular around the minimum points of $V_N(\theta)$.
- The filters $G^{-1}(q^{-1},\theta)$ and $H^{-1}(q^{-1},\theta)$ are smooth differentiable functions of the parameter vector.

What happens with the estimate $\hat{\theta}_N$ as $N \to \infty$?

Consistency:

 $\begin{cases} \hat{\theta}_{\infty} \triangleq \lim_{N \to \infty} \hat{\theta}_{N} = \operatorname{argmin}_{\theta} V_{\infty}(\theta) \\ \operatorname{argmin}_{\theta} V_{\infty}(\theta) = \lim_{N \to \infty} \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{t=1}^{N} \epsilon^{2}(t,\theta) \approx E[\epsilon^{2}(t,\theta)] \end{cases}$

The PEM estimates are robust and efficient:

- As $N o \infty$, $\hat{ heta}_N$ converges to a minimum point of V_∞
- If the model class includes the 'true' system \mathcal{S} , then the PEM is SI $(\hat{ heta}_{\infty} \in \mathcal{D}_T)$
- If S is PI, then the PEM is consistent (or $\hat{\theta}_N \to \theta_0$ as $N \to \infty$).

Asymptotic Distributions: Asymptotic distributions of the parameter estimates (assuming that the model in PI), or $\hat{\theta}_N \rightarrow \theta_0$.

• The parameter estimate errors are asymptotically Gaussian distributed, with zero mean and variance ${f P}$,

$$\sqrt{N}(\hat{\theta}_N - \theta_0) \to \mathcal{N}(0_n, \mathbf{P})$$

 $\bullet\,$ for SISO systems, the covariance matrix ${\bf P}$ is given as

$$\mathbf{P} = \Lambda E \left[\psi(t, \theta_0) \psi^T(t, \theta_0) \right]^{-1}$$

where

$$\psi(t,\theta_0) = -\frac{\partial \epsilon(t,\theta)}{\partial \theta}$$

and $\Lambda = E[e(t)e^T(t)].$

Accuracy of linear regression for static/dynamic case:

Static case

- $\hat{\theta}_N$ unbiased
- Asymptotically Gaussian

$$\mathbf{P} = \Lambda \left(\frac{1}{N} \sum_{t=1}^{N} \varphi(t, \theta_0) \varphi^T(t, \theta_0) \right)^{-1}$$

Dynamic case
$$(N \to \infty)$$

- $\hat{\theta}_N$ consistent
- Asymptotically Gaussian as $\mathcal{N}(0_n,\mathbf{P})$ with

$$\mathbf{P} = \Lambda E \left[\varphi(t, \theta_0) \varphi^T(t, \theta_0) \right]^{-1}$$

Statistical Efficiency:

- A method is said to be statistically efficient if its estimates have the smallest possible variance.
- The smallest possible variance of any (asymptotically) unbiased estimator is given by the Cramér-Rao lowerbound.
- For Gaussian disturbances, the PEM is statistically efficient. (equivalent to the Maximum Likelihood estimator) if
 - Single-output: $V_N(\theta) = \frac{1}{N} \sum_{t=1}^N \epsilon^2(t, \theta).$
 - Multiple-output:

$$V_N(\theta) = \operatorname{tr} \left(\mathbf{SR}_N(\theta) \right),$$

where $\mathbf{S} = \Lambda^{-1}(\theta_0)$, - or $V_N(\theta) = \det(\mathbf{R}_N(\theta))$

Approximation

The true system is often more complex than the model structure (under-parametrization, \mathcal{D}_T is empty)

- Still $\hat{\theta}_N$ converges to a minimum point of $V_N(\theta)$ as $N \to \infty$.
- We cannot expect $G(q^{-1}, \theta) \equiv G_0(q^{-1})$ or $H(q^{-1}, \theta) \equiv H_0(q^{-1})$.
- The model-fit can be controlled by pre-filtering the data,

$$u_F(t) = F(q^{-1})u(t), \quad y_F(t) = F(q^{-1})y(t)$$

or by choosing an appropriate input.

• The OE model structure is useful.

Conclusions

- The PEM is a general method to obtain a parametric model of a dynamic system. The following choices define a prediction error method:
 - Choice of model structure.
 - Choice of predictor.
 - Choice of criterion function.
- The PEM principle is to minimize the prediction errors given a certain model structure and predictor.
- The PEM principle leads to parameter estimates that have several nice properties (in general consistent and statistically efficient estimates).