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Lecture 4

• Prediction Error Methods (PEM) (Ch. 7)
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The Least Squares Method

• Chapter 4: the least squares method applied to static
(deterministic) linear regression models (ϕ(t) deterministic).

• What happens when we consider dynamic models?

A(q−1)y(t) = B(q−1)u(t) + e(t)

Write as

y(t) = ϕT (t)θ + e(t)

where

ϕ(t) = (−y(t− 1), . . . ,−y(t− na), u(t− 1), . . . , u(t− nb))T

and

θ =
(
a1, . . . , ana, b1, . . . , bnb

)T
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• Least Squares estimator:

θ̂LS =

(
1
N

N∑
t=1

ϕ(t)ϕT (t)

)−1

1
N

N∑
t=1

ϕ(t)y(t)

Properties: Assume the ’true’ system can be described as

y(t) = ϕT (t)θ0 + v(t)

Then, the least squares estimate θ̂LS will be consistent (θ̂LS →
θ0 as N →∞), if

• E[ϕ(t)ϕT (t)] is nonsingular.

• E[ϕ(t)v(t)] = 0
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The first condition will be satisfied in most cases. A few
exceptions

• The input is not persistently exiting of order nb.

• The data is noise-free (v(t) ≡ 0) and the model order is
chosen too high (this implies that A and B have common
factors).

• The system operates under feedback with a low order
regulator.

The second condition is in most cases not satisfied. A notable
exception is when e(t) is white noise.
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Modifications of the Least Squares Methods

The second constraint is relaxed as follows:

• Prediction error Methods. Models the noise as well!

• The Instrumental variable methods (IV methods) - modify
the normal equations of the least-squares estimator.
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Prediction Error Methods (PEM)

Idea:

• Models the noise as well→ stochastic model, i.e. the outputs
of the models are not deterministic.

• Minimize the prediction errors ε(t, θ) = y(t)− ŷ(t|t− 1, θ)

• The LS estimator is a special case, where

ε(t, θ) = y(t)− y(t|t− 1, θ) = y(t)− ϕT (t)θ.

Hence, a general methodology applicable to a wide range of
model structures.
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Examples.

Find the optimal predictor, ŷ(t|t−1) for the following systems
assuming E[e(t)] = 0 and E[e(t)e(s)] = λ2δts (notice that
y(t|t− 1) is a function of {(u(s), y(s))}s<t).

• y(t) = e(t)

• (1− 0.1q−1)y(t) = −0.5q−1u(t) + e(t)

• (1− 0.1q−1)y(t) = −0.5q−1u(t) + (1− 0.8q−1)e(t)
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Predictions

A predictor can be described as a filter that predicts the
output of a dynamic system given past measured input- and
output signals. Design the predictor as

• Choose the model structure M, e.g. ARX, OE or ARMAX

• Choose the predictor ŷ(t|t− 1, θ). A general predictor can be
viewed as

y(t|t− 1, θ) = L1(q−1, θ)y(t) + L2(q−1, θ)u(t)

where L1 and L2 are such that they only take past
measurements into account.
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Optimal Predictor

We will here consider the general model structure:

y(t) = G(q−1, θ)u(t) +H(q−1, θ)e(t)

where E[e(t)] = 0 and E[e(t)e(s)] = λ2δts.

Goal: Find the optimal mean least square predictor ŷ(t, t−
1, θ), i.e. solve

min
y(t|t−1,θ)

E[ε(t)εT (t)]

where ε(t) = y(t) − y(t|t − 1, θ) is the prediction error and
ŷ(t|t− 1, θ) depends on the past measurements only.
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Results: Under the assumptions that

• z(t) only depends on past measurements.

• u(t) and e(s) are uncorrelated for t < s

then

ŷ(t|t− 1, θ) = H−1(q−1, θ)G−1(q−1, θ)u(t)

+
(
I −H−1(q−1, θ)

)
y(t) (1)

is the optimal mean square predictor, and e(t) the prediction
error, and

ε(t, θ) = y(t)− ŷ(t|t− 1, θ)

= H−1(q−1, θ)y(t)−G−1(q−1, θ)u(t)

= e(t).

Hence
E[ε(t, θ)εT (t, θ)] = Λ(θ)
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Optimal Prediction for State Space Models

As an alternative to the model structure:

y(t) = G(q−1, θ)u(t) +H(q−1, θ)e(t),

it is common to use a state-space model with states (x(t))t ⊂ Rn{
x(t+ 1) = F (θ)x(t) +B(θ)u(t) + v(t)
y(t) = C(θ)x(t) + e(t)

where v(t) and e(t) are uncorrelated white noise sequences with
zero mean and covariance matrices R1 and R2.

In this case the optimal mean square predictor is given by
the Kalman filter (see p.196).
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Cost Function

How do we find the best model in the model structure?

• Minimize the prediction errors ε(t, θ) for all t. How?

• Choose a criterion function VN(θ) to minimize

θ̂ = argmin
θ

VN(θ)

where VN(θ) depends on ε(t, θ) is a suitable manner.

Depending on the choice of model structures, predictor filters
and criterion function, the minimization of the loss function is
simple/difficult.
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For MISO systems the following criterion function is most
often used:

VN(θ) =
1
N

N∑
t=1

ε2(t, θ).

In general, the cost function is choses as

VN(θ) = h(RN(θ)),

where h : Rn×n → R is a scalar-valued, monotonically increasing
function, and RN(θ) is the covariance matrix of the prediction
errors, or

RN(θ) =
1
N

N∑
i=1

ε(t, θ)εT (t, θ).

Ex. h(·) = tr(·) or h(·) = det(·).
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A PEM Algorithm

In order to make a PEM, the user has to make the following
choices:

• Choice of model structures. How should G−1, H−1 and Λ be
parametrized by θ?

• Choice of predictor. Usually the optimal mean square
predictor is used.

• Choice of criterion function VN(θ). A scalar-valued function
of all prediction errors {ε(t, θ)}t which will assess the
performance of the predictor used.
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Computational Aspects

Analytical (closed-form) solutions exists If the predictor
is ’linear-in-the-parameters’, or

ŷ(t|t− 1, θ) = ϕT (t)θ,

and the associate criterion VN is simple enough, a closed form
solution may exists. For example if

Vn(θ) =
1
N

N∑
t=1

ε2(t, θ),

PEM is equivalent to OLS. This holds for example for ARX or
FIR models, but not for ARMAX or OE models.

No Analytical (closed-form) solutions exists In general
criteria, and for predictors that are not ’linear-in-the-parameters’,
a numerical search algorithm is required to find θ that minimizes
VN(θ).
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Numerical minimization

• Nonlinear optimization → local minima may exist.

• Time-consuming (convergence rate) and computationally
complex.

• Initialization.
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Different (standard) methods available:

• The Newton-Raphson algorithm.

θ̂(k+1) = θ̂(k) − αk
(
V ′′N(θ̂(k))−1V ′(θ̂(k))

)
The gradient (Hessian) of the cost-function are often
computationally expensive to calculate. Fast Convergence.

• The Gauss-Newton algorithm is a computationally less
demanding algorithm, with a (theoretically) slower rate of
convergence.

• Gradient-based methods are simple to apply, but even slower
convergence rates.

• Grid-search Search the whole parameter space. VERY time-
consuming.
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Theoretical Analysis

Assumptions

• The signals (u(t), y(t))t are stationary stochastic processes.

• The input sequence if PE.

• V ′′N(θ) is nonsingular around the minimum points of VN(θ).

• The filters G−1(q−1, θ) and H−1(q−1, θ) are smooth
differentiable functions of the parameter vector.

What happens with the estimate θ̂N as N →∞?
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Consistency:

{
θ̂∞ , limN→∞ θ̂N = argminθ V∞(θ)
argminθ V∞(θ) = limN→∞ argminθ

1
2

∑N
t=1 ε

2(t, θ) ≈ E[ε2(t, θ)]

The PEM estimates are robust and efficient:

• As N →∞, θ̂N converges to a minimum point of V∞

• If the model class includes the ’true’ system S, then the PEM
is SI (θ̂∞ ∈ DT )

• If S is PI, then the PEM is consistent (or θ̂N → θ0 as
N →∞).
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Asymptotic Distributions: Asymptotic distributions of the
parameter estimates (assuming that the model in PI), or θ̂N →
θ0.

• The parameter estimate errors are asymptotically Gaussian
distributed, with zero mean and variance P,

√
N(θ̂N − θ0)→ N (0n,P)

• for SISO systems, the covariance matrix P is given as

P = ΛE
[
ψ(t, θ0)ψT (t, θ0)

]−1

where

ψ(t, θ0) = −∂ε(t, θ)
∂θ

and Λ = E[e(t)eT (t)].
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Accuracy of linear regression for static/dynamic case:

Static case

• θ̂N unbiased

• Asymptotically Gaussian

P = Λ

(
1
N

N∑
t=1

ϕ(t, θ0)ϕT (t, θ0)

)−1

Dynamic case (N →∞)

• θ̂N consistent

• Asymptotically Gaussian as N (0n,P) with

P = ΛE
[
ϕ(t, θ0)ϕT (t, θ0)

]−1
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Statistical Efficiency:

• A method is said to be statistically efficient if its estimates
have the smallest possible variance.

• The smallest possible variance of any (asymptotically)
unbiased estimator is given by the Cramér-Rao lowerbound.

• For Gaussian disturbances, the PEM is statistically efficient.
(equivalent to the Maximum Likelihood estimator) if

– Single-output: VN(θ) = 1
N

∑N
t=1 ε

2(t, θ).
– Multiple-output:

VN(θ) = tr (SRN(θ)) ,

where S = Λ−1(θ0),
– or VN(θ) = det(RN(θ))
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Approximation

The true system is often more complex than the model
structure (under-parametrization, DT is empty)

• Still θ̂N converges to a minimum point of VN(θ) as N →∞.

• We cannot expect G(q−1, θ) ≡ G0(q−1) or H(q−1, θ) ≡
H0(q−1).

• The model-fit can be controlled by pre-filtering the data,

uF (t) = F (q−1)u(t), yF (t) = F (q−1)y(t)

or by choosing an appropriate input.

• The OE model structure is useful.
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Conclusions

• The PEM is a general method to obtain a parametric model of
a dynamic system. The following choices define a prediction
error method:

– Choice of model structure.
– Choice of predictor.
– Choice of criterion function.

• The PEM principle is to minimize the prediction errors given
a certain model structure and predictor.

• The PEM principle leads to parameter estimates that have
several nice properties (in general consistent and statistically
efficient estimates).
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