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Lecture 4

e Prediction Error Methods (PEM) (Ch. 7)
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The Least Squares Method

e Chapter 4: the least squares method applied to static
(deterministic) linear regression models (¢ (t) deterministic).

e What happens when we consider dynamic models?

A(gMy(t) = Blg Hult) + e(t)

Write as
y(t) =" ()0 + e(t)
where
gp(t) — (_y(t - 1)7 3 _y(t — na)v u(t - 1)7 e 7u(t — nb))T
and

O = (ah...,ana,bl)"'?bnb)T
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e | east Squares estimator:
1 & R
Ors = <NZ¢(t)¢T(t)> ~ D e(ty(t)
t=1 t=1

Properties: Assume the 'true’ system can be described as

y(t) = ¢" ()00 + v(t)

Then, the least squares estimate éLS will be consistent (éLS —
0y as N — 00), if

o Elp(t)pl(t)] is nonsingular.

o Elp(t)u(t)] =0
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The first condition will be satisfied in most cases. A few
exceptions

e The input is not persistently exiting of order ny,.

e The data is noise-free (v(t) = 0) and the model order is
chosen too high (this implies that A and B have common
factors).

e The system operates under feedback with a low order
regulator.

The second condition is in most cases not satisfied. A notable
exception is when e(t) is white noise.
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Modifications of the Least Squares Methods

The second constraint is relaxed as follows:

e Prediction error Methods. Models the noise as well!

e The Instrumental variable methods (IV methods) - modify
the normal equations of the least-squares estimator.
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Prediction Error Methods (PEM)

|dea:

e Models the noise as well — stochastic model, i.e. the outputs
of the models are not deterministic.

e Minimize the prediction errors €(t,0) = y(t) — y(t|t — 1,0)
e The LS estimator is a special case, where

e(t, 0) = y(t) —y(tlt —1,0) = y(t) — ¢* (1)0.

Hence, a general methodology applicable to a wide range of
model structures.

S1-2010 K. Pelckmans Jan.-March, 2010 6



Examples.

Find the optimal predictor, g(t[t—1) for the following systems
assuming Ele(t)] = 0 and Ele(t)e(s)] = A?d;s (notice that
y(t|t — 1) is a function of {(u(s),y(s))}s<t)-

e (1-0.1¢g7YHYy(t) = —0.5¢ tu(t) + e(t)

e (1-0.1¢g7YHy(t) = —0.5¢ tu(t) + (1 — 0.8¢71)e(t)
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Predictions

A predictor can be described as a filter that predicts the
output of a dynamic system given past measured input- and
output signals. Design the predictor as

e Choose the model structure M, e.g. ARX, OE or ARMAX

e Choose the predictor g(t|t — 1,0). A general predictor can be
viewed as

y(tlt —1,0) = L1i(q~ ", 0)y(t) + La(q™ ", 0)u(t)

where L and Lo are such that they only take past
measurements into account.
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Optimal Predictor

We will here consider the general model structure:
y(t) = G(g~ ", 0)ult) + H(g ", 0)e(t)

where Ele(t)] = 0 and Ele(t)e(s)] = A\?dys.

Goal: Find the optimal mean least square predictor y(t,t —
1,0), i.e. solve

o B le(t)e” (1))

where €(t) = y(t) — y(t|t — 1,0) is the prediction error and
y(t|t — 1,0) depends on the past measurements only.
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Results: Under the assumptions that
e z(t) only depends on past measurements.
e u(t) and e(s) are uncorrelated for t < s
then
gtlt —1,0) = H (¢, 0)G (g, O)u(t)
+ (I =H (g7, 0) y(t) (1)

is the optimal mean square predictor, and e(t) the prediction
error, and

e(t, )

y(t) — g(tlt —1,0)
= H (¢4 0)y(t) — G g™ 0)u(t)
= e(t).

Hence
Ele(t, H)GT(t, 0)] = A(0)
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Optimal Prediction for State Space Models

As an alternative to the model structure:

y(t) = G(g~ ", 0)u(t) + H(g ", 0)e(t),

it is common to use a state-space model with states (z(¢)); C R"”

z(t+1) = F(0)x(t) + B(0)u(t) + v(t)
y(t) = C(0)x(t) + e(t)

where v(t) and e(t) are uncorrelated white noise sequences with
zero mean and covariance matrices R; and Ros.

In this case the optimal mean square predictor is given by
the Kalman filter (see p.196).

SI-2010 K. Pelckmans Jan.-March, 2010 11



Cost Function

How do we find the best model in the model structure?

e Minimize the prediction errors €(t, ) for all t. How?
e Choose a criterion function Vi (6) to minimize

f = argmin Vi ()
0

where Vi (0) depends on €(t,0) is a suitable manner.

Depending on the choice of model structures, predictor filters
and criterion function, the minimization of the loss function is

simple/difficult.
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For MISO systems the following criterion function is most
often used:
;N
_ 2
Vn(0) = N;e (t.9).
In general, the cost function is choses as

Vi (0) = h(Rn(6)),

where h : R™*™ — R is a scalar-valued, monotonically increasing
function, and R (0) is the covariance matrix of the prediction
errors, or

1 N
Ry(0) = > et 0)e"(t,0).

1

Ex. h(-) = tr(+) or h(-) = det(-).
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A PEM Algorithm

In order to make a PEM, the user has to make the following
choices:

e Choice of model structures. How should G~1, H~1 and A be
parametrized by 67

e Choice of predictor. Usually the optimal mean square
predictor is used.

e Choice of criterion function V(6). A scalar-valued function
of all prediction errors {e(t,0)}; which will assess the
performance of the predictor used.
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Computational Aspects

Analytical (closed-form) solutions exists If the predictor
is 'linear-in-the-parameters’, or

g(tlt = 1,0) = " (1)0,

and the associate criterion V) is simple enough, a closed form
solution may exists. For example if

Val6) = 1 € (1.0),

t=1

PEM is equivalent to OLS. This holds for example for ARX or
FIR models, but not for ARMAX or OE models.

No Analytical (closed-form) solutions exists In general
criteria, and for predictors that are not 'linear-in-the-parameters’,
a numerical search algorithm is required to find 6 that minimizes

Vi (0).
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Numerical minimization

e Nonlinear optimization — local minima may exist.

e Time-consuming (convergence rate) and computationally
complex.

e Initialization.
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Different (standard) methods available:

e The Newton-Raphson algorithm.
Gl+1) — (k) _ o, (V]g(mk))—lv/(g(k)))

The gradient (Hessian) of the cost-function are often
computationally expensive to calculate. Fast Convergence.

e The Gauss-Newton algorithm is a computationally less
demanding algorithm, with a (theoretically) slower rate of
convergence.

e Gradient-based methods are simple to apply, but even slower
convergence rates.

e Grid-search Search the whole parameter space. VERY time-
consuming.
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Theoretical Analysis

Assumptions

e The signals (u(t),y(t)): are stationary stochastic processes.
e The input sequence if PE.

e V/{7(0) is nonsingular around the minimum points of Vi (8).

e The filters G 1(¢71,0) and H '(¢7',0) are smooth
differentiable functions of the parameter vector.

What happens with the estimate On as N — 00?
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Consistency:

A

Ooo 2 limy_,o0 On = argming Vo (0)
argming Voo (0) = limy_, o argmin, 1 Zi\;l e2(t,0) ~ E[e*(t,0)]

The PEM estimates are robust and efficient:

o As N — o0, éN converges to a minimum point of V

e |f the model class includes the "true’ system S, then the PEM
is Sl ((900 c DT)

e If S is PI, then the PEM is consistent (or Oy — 0Oy as
N — ).
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Asymptotic Distributions: Asymptotic distributions of the
parameter estimates (assuming that the model in Pl), or O —

0o.

e The parameter estimate errors are asymptotically Gaussian
distributed, with zero mean and variance P,

VN (On — 6) — N(0,,, P)

e for SISO systems, the covariance matrix P is given as

P = AE [ib(t,00)¢7 (L, 00)]
where

Oe(t, 0)

w(ta 90) - = Y

and A = Ele(t)e” ()],
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Accuracy of linear regression for static/dynamic case:

Static case

° éN unbiased

e Asymptotically Gaussian

P=A (]1[ ; o(t, 00)p" (t, 90))

Dynamic case (N — o)

e () consistent

e Asymptotically Gaussian as N (0, P) with

P =AF [@(tv GO)SOT(t? 90)} -
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Statistical Efficiency:

e A method is said to be statistically efficient if its estimates
have the smallest possible variance.

e The smallest possible variance of any (asymptotically)
unbiased estimator is given by the Cramér-Rao lowerbound.

e For Gaussian disturbances, the PEM is statistically efficient.
(equivalent to the Maximum Likelihood estimator) if

— Single-output: Vn(6) = %Zi\le e%(t,0).
— Multiple-output:

Vn(0) =tr (SRN(0)),

where S = A71(6p),
— or Vy(0) = det(R(6))
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Approximation

The true system is often more complex than the model
structure (under-parametrization, Dr is empty)

e Still @5 converges to a minimum point of Vi (6) as N — oo.

e We cannot expect G(¢71,0) = Go(qg™!) or H(qg71,0) =
Ho(q™).

e The model-fit can be controlled by pre-filtering the data,
up(t) = F(g u(t), yrt) = F(g )y()
or by choosing an appropriate input.

e The OE model structure is useful.
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Conclusions

e The PEM is a general method to obtain a parametric model of
a dynamic system. The following choices define a prediction
error method:

— Choice of model structure.
— Choice of predictor.
— Choice of criterion function.

e The PEM principle is to minimize the prediction errors given
a certain model structure and predictor.

e The PEM principle leads to parameter estimates that have
several nice properties (in general consistent and statistically
efficient estimates).
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